powering on

Houston firm's portfolio co. goes online with solar, energy storage facility in Nevada

Primergy says Gemini is the biggest solar-and-storage duo in the U.S. Photo via primergysolar.com

A portfolio company of Quinbrook Infrastructure Partners, an energy-focused investment manager with U.S. offices in Houston and New York, has flipped the switch on its solar power and battery energy storage system in Nevada’s Mojave Desert.

The portfolio company, Oakland, California-based Primergy Solar, says its Gemini Solar + Storage project near Las Vegas is now fully operational.

Gemini’s 1.8 million solar panels can generate up to 690 megawatts of power, enough to meet 10 percent of Nevada’s peak power demand. The panels are paired with 380 megawatts of four-hour battery storage.

“Gemini creates a blueprint for holistic and innovative clean energy development at mega scale, and we are proud to have brought this milestone project to life and to have delivered so many positive impacts across job creation, environmental stewardship, and local community engagement,” David Scaysbrook, co-founder and managing partner of Quinbrook, says in a news release.

Primergy says Gemini is the biggest solar-and-storage duo in the U.S.

“Achieving full commercial operations marks a significant technical and financial milestone for our team. We successfully navigated challenging supply chain and inflation issues through proactive planning and collaboration to bring this project online,” Primergy CEO Ty Daul says.

Primergy develops, owns, and operates utility-scale solar power and battery storage projects across the U.S. It manages projects in several U.S. energy markets, including the one served by the Electric Reliability Council of Texas (ERCOT).

As Gemini was taking shape, Primergy and Quinbrook closed on $1.9 billion in debt and tax equity financing for construction and development.

In October 2022, APG, the largest pension asset manager in the Netherlands, acquired a 49 percent ownership stake in Gemini on behalf of pension fund client ABP.

In April 2024, the remaining 51 percent share of the project was acquired by the $600 million Quinbrook Valley of Fire Fund. Funds associated with Blackstone Strategic Partners and Ares Management Infrastructure Secondaries were the lead investors.

Trending News

A View From HETI

Liangzi Deng (left) and Paul C.W. Chu of the Texas Center for Superconductivity and the Dept. of Physics at the University of Houston received funding for their work. Photo courtesy of UH

Researchers at the Department of Physics at the University of Houston and Texas Center for Superconductivity have received a second-year funding from global leader in business of invention Intellectual Ventures to continue their work on exploring superconductivity,

The project, which is led by Paul C. W. Chu, T.L.L. Temple Chair of Science, professor of physics and founding director of the TcSUH and assistant professor of physics and a new TcSUH principal investigator Liangzi Deng, has been awarded $767,000 to date.

“Working with IV gives us the freedom known for scientific pursuit and at the same time provides intellectual guidance and assistance in accord with the mission goal,” Chu says in a news release.

The researchers are working on making superconductivity easier to achieve. At room temperature and normal atmospheric pressure is where the researchers are looking to simplify superconductivity. One finding from Chu and Deng’s team is called pressure-quench protocol, or PQP.The PQP will help maintain key properties (like superconductivity) in certain materials after the high pressure needed to create them is removed.

“Intellectual Ventures funded this research because Paul Chu is one of the acknowledged thought leaders in the area of superconductivity with a multi-decade track record of scientific innovation and creativity,” Brian Holloway, vice president of IV’s Deep Science Fund and Enterprise Science Fund, adds. “The work led by Chu and Deng on pressure quenching could result in game-changing progress in the field. We are very excited about the preliminary results from the first year and we look forward to continuing this collaboration.”

The project showed early success the first year, as the research used a special system to synthesize materials under high temperatures and pressure. The second-year projects will include the investigation of pressure-induced/enhanced superconductivity in cuprates and hydrides.

“If successful, UH will once again break the record for the highest superconducting Tc at atmospheric pressure,” Deng says in the release. “Additionally, we will collaborate closely with theorists to uncover the mechanism of PQP. Our research has far-reaching implications, with the potential to extend beyond superconductors to other material systems.”

Trending News