Greenhouse gases continue to rise, and the challenges they pose are not going away. Photo via Getty Images

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

Haotian Wang, co-founder of Solidec, a 2025 Houston Startup of the Year finalist. Photo courtesy Welch Foundation.

3 energy transition cos. in the running for Houston Startup of the Year

People's Choice

We're just two weeks away from the 2025 Houston Innovation Awards, presented by InnovationMap.com, and while an expert panel of judges will determine the winners in most categories, one award is up to the public.

Voting is now open for 2025 Houston Startup of the Year, the people's choice award. Six exceptional finalists are in the running for the title, including three from the energy transition sector.

From next-gen biobased materials to technology that creates chemicals without carbon emissions, these companies are shaping the future.

Read about all of the Startup of the Year finalists and their missions below, then cast your vote. You can vote once per day through November 12.

The winner, along with winners in all other categories, will be revealed live on November 13 at Greentown Labs. Tickets to the 2025 Houston Innovation Awards are available now — get yours today.

2025 Houston Startup of the Year finalists:

Eclipse Energy

Eclipse Energy, previously known as Gold H2, is a climatetech startup converting end-of-life oil fields into low-cost, sustainable hydrogen sources. The company completed its first field trial this summer, which demonstrated subsurface bio-stimulated hydrogen production. Eclipse Energy says Its technology could yield up to 250 billion kilograms of low-carbon hydrogen.

Rheom Materials

Rheom Materials is a next-generation startup developing biobased materials for a more sustainable future. Its two flagship offerings are Shorai, a sustainable leather alternative that is usable for apparel, accessories, car interiors, and more, and Benree, an alternative to plastic without the carbon footprint.

Solidec

Solidec is a chemical manufacturing company developing autonomous generators that extract molecules from water and air and convert them into pure chemicals and fuels that are free of carbon emissions. The technology eliminates the need for transport, storage, and permitting.

FlowCare

FlowCare is developing a period health platform that integrates smart dispensers, education, and healthcare into one system to make free, high-quality, organic period products more accessible. FlowCare is live at prominent Houston venues, including Discovery Green, Texas Medical Center, The Ion, and, most recently, Space Center Houston, helping make Houston a “period positivity” city.

MyoStep

MyoStep is a next-generation, lightweight, soft exoskeleton developed at University of Houston for children with cerebral palsy. The soft skeleton aims to address motor impairments that impact their ability to participate in physical activities, self-care, and academics, via an affordable, child-friendly solution that empowers mobility and independence.

Persona AI

Persona AI is a humanoid robotics startup that is creating rugged, autonomous robots for skilled, heavy industry work for various "4D" (dull, dirty, dangerous, and declining) jobs. In May, the company announced a memorandum of understanding with HD Korea Shipbuilding & Offshore Engineering, HD Hyundai Robotic, and Vazil Company to create and deploy humanoid robots for complex welding tasks in shipyards. The project will deliver prototype humanoids by the end of 2026.

---

The Houston Innovation Awards program is sponsored by Houston City College Northwest, Houston Powder Coaters, FLIGHT by Yuengling, and more to be announced soon. For sponsorship opportunities, please contact sales@innovationmap.com.

Houston-headquartered KBR will spin off its Mission Technology Solutions business, while "New KBR" will concentrate solely on sustainability technology. Photo via kbr.com

KBR shifts sustainability focus with planned spinoff

seeing green

Houston-based KBR, a provider of technology and engineering services for government and private-sector customers, is pursuing a tax-free spinoff of its Mission Technology Solutions business as a public company. Following the spinoff, KBR would remain a public company.

The new company, nicknamed SpinCo, would focus on technology and engineering services for the space and national security sectors. The scaled-down KBR, nicknamed RemainCo, would concentrate solely on sustainability technology and services designed to reduce carbon emissions and support energy transition efforts.

According to the company, RemainCo, or New KBR, will is positioned to serve the ammonia and syngas, chemical and petrochemicals, clean refining, and circular economy markets.

Stuart Bradie, chairman, president and CEO of KBR, said that from July 2024 to July 2025, the Mission Technology Solutions segment generated revenue of $5.8 billion. During the same period, the Sustainability Technology Solutions segment posted revenue of $3.7 billion.

KBR has forecast fiscal year 2025 revenue of $8.1 billion, up from $7.7 billion during the previous fiscal year. The company’s 2026 fiscal year starts in January.

In a news release, KBR said SpinCo and the restructured KBR would “deliver long-term profitable growth and value for customers, associates, and shareholders.”

“Our team has successfully built two leading businesses with the necessary scale and strong financial profile to enable us to take this next exciting step,” Bradie told Wall Street analysts.

Over the past decade, Bradie said, KBR has evolved into “a leading provider of differentiated, innovative, up-market science, technology, and engineering solutions with global scale, global reach, and global impact.” The spinoff would create two public companies that’ll “unlock the next phase of value creation,” he added.

Bradie will be chairman, president, and CEO of the newly configured KBR, while Mark Sopp, KBR’s executive vice president and chief financial officer, will transition to oversight of the Mission Technology Solutions spinoff. Effective Jan. 5, Shad Evans will succeed Sopp as CFO of KBR. He currently is KBR’s senior vice president of financial operations.

Bradie said an executive search firm has been hired to identify candidates for the CEO and CFO roles at SpinCo.

The spinoff is expected to be completed in mid- to late 2026.

San Antonio-based CPS Energy has acquired four Houston-area power plants that are dual-fuel capable. Photo via Getty Images.

CPS Energy invests $1.4B in Houston hydrogen-ready power plants

CPS Energy, which services San Antonio, has agreed to acquire four state-of-the-art natural gas power generation facilities in the Houston area from Missouri-based PROENERGY for $1.387 billion, according to a release.

The recently constructed plants have an aggregate electric capacity of 1,632 megawatts and are located in the Electric Reliability Council of Texas (ERCOT) markets in Harris, Brazoria and Galveston counties. The assets are dual-fuel capable, which would allow CPS Energy to transition to a hydrogen fuel blend and reduce carbon emissions.

CPS president and CEO Rudy Garza said that the acquisition presents a lower cost and lower supply chain risk alternative to building new power facilities while providing reliable, affordable and cleaner energy.

“We are getting the best of both worlds by securing new infrastructure without delay while also strengthening the power supply for our community,” Garza said in a news release. “This acquisition secures reliable capacity today – at a lower cost – and is a win for the customers of CPS Energy, the city of San Antonio and all the communities we serve by meeting their long-term energy needs. As we add resources to meet the needs of our fast-growing communities, we will continue to look to a diverse balance of energy sources that complement our portfolio, including natural gas, solar, wind, and storage, keeping our community powered and growing.”

PROENERGY will continue to staff, operate, and maintain the plants.

“By acquiring recently constructed, currently operating modern power plants that utilize proven technology already in use by CPS Energy, we avoid higher construction costs, inflationary risk, and long timelines associated with building new facilities – while also enhancing the reliability and affordability of the CPS Energy generation portfolio,” Garza added in the release.

CPS Energy is one of the nation’s largest public power, natural gas, and electric companies with 950,000 electric and 389,000 natural gas customers in the San Antonio area and surrounding counties.

Hobby Airport's new solar canopy is operating at 100% capacity. Photo courtesy Houston Airports.

Hobby debuts solar canopy as airport system reaches new sustainability milestone

solar solutions

Houston's William P. Hobby Airport is generating its own clean energy.

Houston Airports announced that Hobby's red garage is now home to a "solar canopy" that is producing energy at 100 percent capacity to power daily operations. The photovoltaic (PV) solar system generated more than 1.1 gigawatt-hours of electricity in testing, and is expected to produce up to 1 megawatt-hour now that it's operating at full power.

“This project is proof that sustainability can be practical, visible and directly tied to the passenger experience,” Jim Szczesniak, director of aviation for Houston Airports, said in a news release. “Passengers now park under a structure that shields their cars from the Texas sun while generating clean energy that keeps airport operations running efficiently, lowering overall peak demand electrical costs during the day and our carbon footprint. It’s a win for travelers, the city and the planet.”

The project was completed by Texas A&M Engineering Experiment Station (TEES) and CenterPoint Energy. It's part of Houston Airport's efforts to reduce carbon emissions by 40 percent over its 2019 baseline.

In a separate announcement, the airport system also shared that it recently reached Level 3 in the Airports Council International (ACI) Airport Carbon Accreditation program after reducing emissions by 19 percent in three years. This includes reductions at George Bush Intercontinental Airport (IAH), Hobby and Ellington Airport/Houston Spaceport.

The reductions have come from initiatives such as adding electric vehicles to airport fleets, upgrading airfield lighting with LED bulbs, adding smarter power systems to terminals, and improving IAH's central utility plant with more efficient equipment. Additionally, the expansion to Hobby's West Concourse and renovations at IAH Terminal B incorporate cleaner equipment and technology.

According to Houston Airports, from 2019 to 2023:

  • IAH reduced emissions by 17 percent
  • Hobby reduced emissions by 32 percent
  • Ellington Airport reduced emissions by 4 percent

"I see firsthand how vital it is to link infrastructure with sustainability,” Houston City Council Member Twila Carter, chair of the council’s Resilience Committee, said in the release. “Reducing carbon emissions at our airports isn’t just about cleaner travel — it’s about smarter planning, safer communities and building a Houston that can thrive for generations to come.”

Eight Texas companies made it on Time’s Most Sustainable Companies list for 2025. Photo via Getty Images

Houston-area company leads Texas businesses on Time's most sustainable list

Spring-based IT company Hewlett Packard Enterprise leads the list of eight Texas businesses that appear in Time magazine’s and data provider Statista’s World’s Most Sustainable Companies list for 2025.

HPE landed at No. 68, earning a score of 74.36 out of 100.

Time and Statista said the ranking highlights corporate responsibility and promotes sustainable practices.

“In an era marked by significant environmental challenges and social inequalities, it is crucial to recognize and reward companies prioritizing sustainability,” according to an article on Time’s website. “By featuring these leading entities, the ranking sets a benchmark for other businesses, fostering transparency and accountability and encouraging the integration of sustainability into core corporate strategies.”

Time and Statista’s ranking process started with a list of more than 5,000 of the world’s largest, most influential companies based on factors such as revenue and public prominence. They identified the top 500 companies based on more than 20 data points.

The process weeded out non-sustainable businesses, such as those involved in producing fossil fuels, and zeroed in on:

  • External sustainability ratings
  • Availability and quality of sustainability reports
  • Performance regarding environmental and social responsibility measures

HPE is targeting net-zero status across its supply chain by 2040. Working toward that goal, the company predicts its carbon emissions will decrease by 33 percent from 2020 to 2028.

“The climate transition demands collective action across our entire value chain, and I am resolute in my commitment to ensure that HPE plays a central role in showcasing the attainability of net-zero emissions through our technologies and actions,” said Antonio Neri, HPE’s president and CEO.

Among the ways HPE is reducing carbon emissions are:

  • Shipping certain products in bigger bundles
  • Incorporating environmentally responsible design
  • Using more renewable energy
  • Improving energy efficiency in buildings
  • Eventually shifting to an all-electric automotive fleet

Here’s a rundown of the eight Texas-based companies that made the sustainability list, including their global rankings and scores.

  • No. 68 Spring-based Hewlett Packard Enterprise. Score: 74.36
  • No. 81 Dallas-based CBRE. Score: 73.49
  • No. 142 Dallas-based AMN Healthcare Services. Score: 69.8
  • No. 165 Austin-based Digital Realty. Score: 68.64
  • No. 257 Round Rock-based Dell Technologies. Score: 64.89
  • No. 295 Frisco-based Keurig Dr Pepper. Score: 63.25
  • No. 335 Dallas-based Jacobs Engineering. Score: 61.98
  • No. 471 Dallas-based AT&T. Score: 57.28

France-based Schneider Electric claimed the top spot on the global list. The company opened a 10,500-square-foot, state-of-the-art Energy Innovation Center in Houston earlier this year.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Spring-based private equity firm acquires West Texas wind farm

power deal

Spring-based private equity firm Arroyo Investors has teamed up with ONCEnergy, a Portland, Oregon-based developer of clean energy projects, to buy a 60-megawatt wind farm southeast of Amarillo.

Skyline Renewables, which acquired the site, known as the Whirlwind Energy Center, in 2018, was the seller. The purchase price wasn’t disclosed.

Whirlwind Energy Center, located in Floyd County, West Texas, comprises 26 utility-scale wind turbines. The wind farm, built in 2007, supplies power to Austin Energy.

“The acquisition reflects our focus on value-driven investments with strong counterparties, a solid operating track record, and clear relevance to markets with growing capacity needs,” Brandon Wax, a partner at Arroyo, said in a press release. “Partnering with ONCEnergy allows us to leverage deep operational expertise while expanding our investment footprint in the market.”

Arroyo focuses on energy infrastructure investments in the Americas. Its portfolio includes Spring-based Seaside LNG, which produces liquefied natural gas and LNG transportation services.

Last year, Arroyo closed an investment fund with more than $1 billion in total equity commitments.

Since its launch in 2003, Arroyo has “remained committed to investing in high-quality assets, creating value and positioning assets for exit within our expected hold period,” founding partner Chuck Jordan said in 2022.

$524M Texas Hill Country solar project powered by Hyundai kicks off

powering up

Corporate partners—including Hyundai Engineering & Construction, which maintains a Houston office—kicked off a $524 million solar power project in the Texas Hill Country on Jan. 27.

The 350-megawatt, utility-scale Lucy Solar Project is scheduled to go online in mid-2027 and represents one of the largest South Korean-led investments in U.S. renewable energy.

The solar farm, located on nearly 2,900 acres of ranchland in Concho County, will generate 926 gigawatt-hours of solar power each year. That’s enough solar power to supply electricity to roughly 65,000 homes in Texas.

Power to be produced by the hundreds of thousands of the project’s solar panels has already been sold through long-term deals to buyers such as Starbucks, Workday and Plano-based Toyota Motor North America.

The project is Hyundai Engineering & Construction’s largest solar power initiative outside Asia.

“The project is significant because it’s the first time Hyundai E&C has moved beyond its traditional focus on overseas government contracts to solidify its position in the global project financing market,” the company, which is supplying solar modules for the project, says on its website.

Aside from Hyundai Engineering & Construction, a subsidiary of automaker Hyundai, Korean and U.S. partners in the solar project include Korea Midland Power, the Korea Overseas Infrastructure & Urban Development Corp., solar panel manufacturer Topsun, investment firm EIP Asset Management, Primoris Renewable Energy and High Road Energy Marketing.

Primoris Renewable Energy is an Aurora, Colorado-based subsidiary of Dallas-based Primoris Services Corp. Another subsidiary, Primoris Energy Services, is based in Houston.

High Road is based in the Austin suburb of West Lake Hills.

“The Lucy Solar Project shows how international collaboration can deliver local economic development and clean power for Texas communities and businesses,” says a press release from the project’s partners.

Elon Musk vows to put data centers in space and run them on solar power

Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”