solar deal

Enbridge's new Texas solar project to power Meta data centers

Meta has agreed to purchase 100 percent of the power generated by Enbridge's $900 million solar project near San Antonio. Photo via Getty Images.

Construction is underway on a new 600-megawatt solar project in Texas that will supply renewable energy to Meta Platforms Inc., the owner of Facebook, Instagram and other tech platforms.

Calgary-based Enbridge Inc., whose gas transmission and midstream operations are based in Houston, announced that Meta has agreed to purchase 100 percent of the power generated by its new $900 million solar project known as Clear Fork.

The clean energy developed at Clear Fork will be used to support Meta’s data center operations, according to a news release from Enbridge. Meta has had net-zero emissions across its operational portfolio since 2020, according to its 2024 environmental report. The company matches 100 percent of its data center usage with renewable energy.

"We are thrilled to partner with Enbridge to bring new renewable energy to Texas and help support our operations with 100% clean energy, " Urvi Parekh, Head of Global Energy at Meta, said in a news release.

The Clear Fork project, located near San Antonio, is expected to be operational by the summer of 2027. It will join Enbridge’s first solar power project in Texas, Orange Grove (45 miles west of Corpus Christi), which was activated earlier this year, as well as the company’s Sequoia solar project, which is scheduled to go online in early 2026.

"Clear Fork demonstrates the growing demand for renewable power across North America from blue-chip companies who are involved in technology and data center operations," Matthew Akman, executive vice president of corporate strategy and president of power at Enbridge, said in the news release. "Enbridge continues to advance its world-class renewables development portfolio using our financial strength, supply chain reach and construction expertise under a low-risk commercial model that delivers strong competitive returns."

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News