Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

new findings

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Under a new agreement, ExxonMobil and Rice University aim to develop “systematic and comprehensive solutions” to support the global energy transition. Photo via Getty Images.

ExxonMobil, Rice launch sustainability initiative with first project underway

power partners

Houston-based ExxonMobil and Rice University announced a master research agreement this week to collaborate on research initiatives on sustainable energy efforts and solutions. The agreement includes one project that’s underway and more that are expected to launch this year.

“Our commitment to science and engineering, combined with Rice’s exceptional resources for research and innovation, will drive solutions to help meet growing energy demand,” Mike Zamora, president of ExxonMobil Technology and Engineering Co., said in a news release. “We’re thrilled to work together with Rice.”

Rice and Exxon will aim to develop “systematic and comprehensive solutions” to support the global energy transition, according to Rice. The university will pull from the university’s prowess in materials science, polymers and catalysts, high-performance computing and applied mathematics.

“Our agreement with ExxonMobil highlights Rice’s ability to bring together diverse expertise to create lasting solutions,” Ramamoorthy Ramesh, executive vice president for research at Rice, said in the release. “This collaboration allows us to tackle key challenges in energy, water and resource sustainability by harnessing the power of an interdisciplinary systems approach.”

The first research project under the agreement focuses on developing advanced technologies to treat desalinated produced water from oil and gas operations for potential reuse. It's being led by Qilin Li, professor of civil and environmental engineering at Rice and co-director of the Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT) Center.

Li’s research employs electrochemical advanced oxidation processes to remove harmful organic compounds and ammonia-nitrogen, aiming to make the water safe for applications such as agriculture, wildlife and industrial processes. Additionally, the project explores recovering ammonia and producing hydrogen, contributing to sustainable resource management.

Additional projects under the agreement with Exxon are set to launch in the coming months and years, according to Rice.

New research from Rice and UH has helped boost the lifespan of CO2RR systems, a newer technology used for carbon capture. Photo via htxenergytransition.org

Rice University and UH labs team up to improve emerging carbon capture technique

new findings

A team of researchers led by professors from two Houston universities has discovered new methods that help stabilize an emerging technique known as carbon dioxide reduction reaction, or CO2RR, that is used for carbon capture and utilization processes.

The team led by Rice University’s Haotian Wang, associate professor in chemical and biomolecular engineering, and Xiaonan Shan, associate professor of electrical and computer engineering at University of Houston, published its findings in a recent edition of the journal Nature Energy.

CO2RR is an emerging carbon capture and utilization technique where electricity and chemical catalysts are used to convert carbon dioxide gas into carbon-containing compounds like alcohols, ethylene, formic acids or carbon monoxide, according to a news release from Rice. The result can be used as fuels, chemicals or as starting materials to produce other compounds.

The technology is used in commercial membrane electrode assembly (MEA) electrolyzers to convert carbon dioxide into valuable compounds, but the technology isn’t perfected. A significant challenge in CO2RR technology has been the accumulation of bicarbonate salt crystals on the backside of the cathode gas diffusion electrode and within the gas flow channels. The salt precipitates block the flow of carbon dioxide gas through the cathode chamber, which reduce the performance and can cause a failure of the electrolyzers.

The goal in the study was to understand why and how bicarbonate salts form during this reaction. The Rice and UH teams worked together using operando Raman spectroscopy, which is a technique that allows researchers to study the structure of materials and any precipitates that adhere to them while the device is functioning.

“By utilizing operando Raman spectroscopy and optical microscopy, we successfully tracked the movement of bicarbonate-containing droplets and identified their migration pattern,” Shan said in the release. “This provided us the information to develop an effective strategy to manage these droplets without interrupting system stability.”

Next, the team worked to prevent the salt crystals from forming. First, they tested lowering the concentration of cations, like sodium or potassium, in the electrolyte to slow down the salt formation. This method proved to be effective.

They also coated the cathode with parylene, a synthetic polymer that repels water, like Teflon, which also notably improved the stability of the electrolyzer and prevented salt accumulation.

“Inspired by the waxy surface of the lotus leaf which causes water droplets to bead up and roll off, carrying off any dirt particles with it and leaving the leaf’s surface clean, we wondered if coating the gas flow channel with a nonstick substance will prevent salt-laden droplets from staying on the surface of the electrodes for too long and, therefore, reduce salt buildup.” Wang said in the release.

According to Wang, these relatively simple discoveries can extend the operational lifespan of CO2RR systems from a few hundred hours to over 1,000 hours.

The findings also have major implications for commercial applications, Shan added.

“This advancement paves the way for longer-lasting and more reliable (CO2RR) systems, making the technology more practical for large-scale chemical manufacturing,” Shan said in the release. “The improvements we developed are crucial for transitioning CO2 electrolysis from laboratory setups to commercial applications for producing sustainable fuels and chemicals.”

The new Rice Center for Membrane Excellence, or RiCeME, will focus on membrane separation practices and advance next-generation membrane materials, which are essential in energy conversion processes. Image via Getty Images.

Rice launches new center focused on membrane technology for energy conversion

new material

Rice University announced the formation of a new center focused on developing advanced membrane materials and separation technologies for the energy transition.

Known as the Rice Center for Membrane Excellence, or RiCeME, the center will aim to secure funding to develop more efficient and sustainable membrane separation practices and advance next-generation membrane materials, which are essential in energy conversion processes.

The center, part of Rice's Water Technologies Entrepreneurship and Research, or WaTER Institute, also plans to drive water reuse and resource recovery solutions, perform bench-scale testing and pilot-scale demonstrations, and even host workforce development workshops and symposia on membrane science and technology.

The announcement was made during the Rice Global Paris Center Symposium in Paris.

RiCeME will be led by Menachem Elimelech, the Nancy and Clint Carlson Professor in Civil and Environmental Engineering and Chemical and Biomolecular Engineering at Rice. His research focuses on membrane-based processes, advanced materials and nanotechnology.

“Houston is the ideal place to drive innovation in membrane separation technologies,” Elimelech said in a news release. “Membranes are critical for energy-related separations such as fuel cells, carbon capture and water purification. Our work will enhance efficiency and sustainability in these key sectors.”

RiCeME will work on building partnerships with Houston-area industries, including oil and gas, chemical, and energy sectors, according to the release. It will also rely on interdisciplinary research by engaging faculty from civil and environmental engineering, chemical and biomolecular engineering, materials science and nanoengineering, and chemistry departments at Rice.

“Breakthroughs in membrane technology will play a crucial role in addressing energy and sustainability challenges,” Ramamoorthy Ramesh, executive vice president for research at Rice, said in a news release. “RiCeME’s interdisciplinary approach ensures that our discoveries move from the lab to real-world applications, driving innovation at the intersection of science and industry.”.

A team of Texas researchers has landed a nearly $1 million NSF grant to address rural flood management challenges with community input. Photo via Getty Images.

Houston-led project earns $1 million in federal funding for flood research

team work

A team from Rice University, the University of Texas at Austin and Texas A&M University have been awarded a National Science Foundation grant under the CHIRRP—or Confronting Hazards, Impacts and Risks for a Resilient Planet—program to combat flooding hazards in rural Texas.

The grant totals just under $1 million, according to a CHIRRP abstract.

The team is led by Avantika Gori, assistant professor of civil and environmental engineering at Rice. Other members include Rice’s James Doss-Gollin, Andrew Juan at Texas A&M University and Keri Stephens at UT Austin.

Researchers from Rice’s Severe Storm Prediction, Education and Evacuation from Disasters Center and Ken Kennedy Institute, Texas A&M’s Institute for A Disaster Resilient Texas and the Technology & Information Policy Institute at UT Austin are part of the team as well.

Their proposal includes work that introduces a “stakeholder-centered framework” to help address rural flood management challenges with community input.

“Our goal is to create a flood management approach that truly serves rural communities — one that’s driven by science but centers around the people who are impacted the most,” Gori said in a news release.

The project plans to introduce a performance-based system dynamics framework that integrates hydroclimate variability, hydrology, machine learning, community knowledge, and feedback to give researchers a better understanding of flood risks in rural areas.

The research will be implemented in two rural Texas areas that struggle with constant challenges associated with flooding. The case studies aim to demonstrate how linking global and regional hydroclimate variability with local hazard dynamics can work toward solutions.

“By integrating understanding of the weather dynamics that cause extreme floods, physics-based models of flooding and AI or machine learning tools together with an understanding of each community’s needs and vulnerabilities, we can better predict how different interventions will reduce a community’s risk,” Doss-Gollin said in a news release.

At the same time, the project aims to help communities gain a better understanding of climate science in their terms. The framework will also consider “resilience indicators,” such as business continuity, transportation access and other features that the team says more adequately address the needs of rural communities.

“This work is about more than flood science — it’s also about identifying ways to help communities understand flooding using words that reflect their values and priorities,” said Stephens. “We’re creating tools that empower communities to not only recover from disasters but to thrive long term.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Harris County looks to future with new Climate Justice Plan

progress plan

Harris County commissioners approved a five-point Climate Justice Plan last month with a 3-1 vote by Harris County commissioners. The plan was created by the Office of County Administration’s Office of Sustainability and the nonprofit Coalition for Environment, Equity and Resilience.

“Climate action planning that centers on justice has the potential to spark innovative thinking and transformative actions that will lead to meaningful and just transitions in communities, policies, funding mechanisms, and implementation strategies,” the 59-page report reads.

The plan seeks to address issues relating to ecology, infrastructure, economy, community and culture. Here’s a breakdown:

Ecology

The plan will work towards clean air, water, and soil efforts that support the health of the environment, renewable energy that reduces greenhouse gases and pollution, and conservation and protection of our natural resources. Some action items include:

  • Increasing resources for local government agencies
  • Developing a free native seed bank at all libraries
  • Identifying partners and funding streams to reduce the costs of solar power for area households
  • Producing renewable energy on large tracts of land
  • Expanding tree planting by 20 percent
  • Providing tree maintenance and restoration efforts
  • Incentivizing gray water systems and filtration to conserve fresh water

Economy

In terms of the economy, the Climate Justice Plan wants the basic needs of the community met and wants to also incentivize resilience, sustainability, and climate solutions, and recycling and reuse methods. Specific actions include:

  • Quantifying the rising costs associated with climate change
  • Expanding resources and partnering with organizations to support programs that provide food, utility, housing, and direct cash assistance
  • Supporting a coalition of area non-profit organizations and county offices to strengthen social service support infrastructure
  • Supporting home repair, solar installation, and weatherization programs
  • Identify methods to expand free and efficient recycling and composting services
  • Creating a climate tax levied on greenhouse gas emissions to develop a climate fund to offset the impacts of pollution

Infrastructure

As Houston has been prone to hurricanes and flooding damage, the infrastructure portion of the plan aims to protect the region from risks through preventative floodplain and watershed management. Highlights include:

  • Investing in generators and solar power, plus battery backup and bidirectional EV charging for all county libraries
  • Providing more heating and cooling centers with charging stations
  • Coordinating and deploying community microgrids, especially in neighborhoods prone to losing power
  • Seeking partnerships and funding for low- or no-cost water purifiers for areas with the highest needs
  • Protecting the electric grid through regular maintenance and upgrading, and advocating for greater accountability and responsiveness among appointed officials
  • Developing regulations to require resilient power line infrastructure to prevent outages and failures in new developments

Community and Culture

Housing, a strong economy and access to affordable and healthy food will be achieved under the community aspect of the plan. Under culture, the plan seeks to share knowledge and build trust. Key goals include:

  • Developing a campaign to promote the use of the Harris County 311 system to identify critical community concerns
  • Supporting the development of a Community Housing Plan that ensures stable and safe housing
  • Advocating for revisions to Federal Emergency Management Agency (FEMA) disaster funding to account for renters’ losses and unmet housing needs
  • Developing and funding a whole-home program for repairs, weatherization, and solar energy
  • Developing culturally relevant public relations campaigns to increase knowledge of health, environment and biodiversity across generations
Read the full plan here.

Houston company completes orphan well decommission project in the Gulf

temporary abandonment

Houston-based Promethean Energy announced this month that it has successfully decommissioned offshore orphaned wells in the Matagorda Island lease area.

Around this time last year, the company shared that it would work on the temporary abandonment of nine orphan wells on behalf of the Department of Interior's Bureau of Safety and Environmental Enforcement, or BSEE, in the area. Promethean is known for decommissioning mature assets in a cost-effective and environmentally sustainable manner.

“Our team is incredibly proud to have completed this critical work efficiently, safely, and ahead of budget,” Steve Louis, SVP of decommissioning at Promethean Energy, said in a news release. “By integrating our expertise, technologies and strategic partnerships, we have demonstrated that decommissioning can be both cost-effective and environmentally responsible.”

The company plans to use the Matagora Island project as a replicable model to guide similar projects worldwide. The project used comprehensive drone inspections, visual intelligence tools for safety preparations and detailed well diagnostics to plug the wells.

Next up, Promethean is looking to decommission more of the estimated 14,000 unplugged wells in the Gulf.

"Building on our strong execution performance, our strategy is to continue identifying synergies with other asset owners, fostering collaboration, and developing sustainable decommissioning campaigns that drive efficiency across the industry," Ernest Hui, chief strategy officer of Promethean Energy, added in the release.

Oxy opens energy-focused innovation center in Midtown Houston

moving in

Houston-based Occidental officially opened its new Oxy Innovation Center with a ribbon cutting at the Ion last month.

The opening reflects Oxy and the Ion's "shared commitment to advancing technology and accelerating a lower-carbon future," according to an announcement from the Ion.

Oxy, which was named a corporate partner of the Ion in 2023, now has nearly 6,500 square feet on the fourth floor of the Ion. Rice University and the Rice Real Estate Company announced the lease of the additional space last year, along with agreements with Fathom Fund and Activate.

At the time, the leases brought the Ion's occupancy up to 90 percent.

Additionally, New York-based Industrious plans to launch its coworking space at the Ion on May 8. The company was tapped as the new operator of the Ion’s 86,000-square-foot coworking space in Midtown in January.

Dallas-based Common Desk previously operated the space, which was expanded by 50 percent in 2023 to 86,000 square feet.

CBRE agreed to acquire Industrious in a deal valued at $400 million earlier this year. Industrious also operates another local coworking space is at 1301 McKinney St.

Industrious will host a launch party celebrating the new location Thursday, May 8. Find more information here.

Oxy Innovation Center. Photo via LinkedIn.


---

This story originally appeared on our sister site, InnovationMap.com.