by the numbers

Report: Texas shines as top state for new solar, battery capacity

Texas will make up 35 percent of new utility-scale solar capacity in the U.S. this year. Photo via Getty Images

On a state-by-state basis, Texas will account for the biggest share of new utility-scale solar capacity and new battery storage capacity in 2024, a new federal report predicts.

The report, published by the U.S. Energy Information Administration (EIA), says Texas will make up 35 percent of new utility-scale solar capacity in the U.S. this year, followed by California (10 percent) and Florida (six percent).

In 2024, EIA expects a record-setting addition of 36.4 gigawatts of utility-scale solar capacity across the U.S., nearly double last year’s record-setting addition of 18.4 gigawatts. One gigawatt of electric-generating capacity can power an average of 750,000 homes.

“As the effects of supply chain challenges and trade restrictions ease, solar continues to outpace capacity additions from other generating resources,” the report states.

Meanwhile, a new report from the Environment Texas Research & Policy Center and the Frontier Group found that Texas ranks third in the U.S. for residential solar power generation. Residential solar power generation in Texas grew 646 percent from 2017 through 2022, according to the report.

A February 2023 poll conducted by the University of Houston indicated that nearly two-thirds (64 percent) of Texas homeowners are somewhat or very interested in buying a solar energy system.

“Texas is already soaking up the benefits of rooftop solar,” says Luke Metzger, executive director of the Environment Texas center. “With federal tax credits in place to boost solar adoption in Texas, now is the time to lean in. Every sunny roof without solar panels is a missed opportunity.”

In addition to a spike in utility-scale solar, the EIA report forecasts Texas will lead the way this year in the addition of battery storage capacity, with the expected addition of 6.4 gigawatts. In second place is California, with an expected 5.2 gigawatts of new battery storage capacity. The two states will make up 82 percent of new U.S. battery storage capacity in 2024, says the report.

The federal agency predicts 14.3 gigawatts of U.S. battery storage capacity will be tacked on this year to the existing 15.5 gigawatts.

Overall, EIA anticipates solar will make up 58 percent of all new utility-scale electric-generating capacity this year in the U.S., followed by battery storage at 23 percent.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News