Texas' energy demand will nearly double by 2030, says ERCOT. Photo via Getty Images

Although Texas increased its power supply by 35% over the last four years, a recent report from ERCOT predicts that Texas’ energy demand will nearly double by 2030, with power supply projected to fall short of peak demand in a worst-case scenario beginning in summer 2026. There are many factors and variables that could either increase or decrease the grid’s stability.

Homebuilding in Texas

One of the most easily identifiable challenges is that the population of Texas is continuing to grow, which places greater demand on the state’s power grid. With its booming population, the state is now the second most populous in the country.

In 2024, Texas led the nation in homebuilding, issuing 15% of the country's new-home permits in 2024. Within the first two months of 2025, Houston alone saw more than 11,000 new building permits issued. The fact that Houston is the only major metro in the United States to lack zoning laws means it does not directly regulate density or separate communities by use type, which is advantageous for developers and homebuilders, who have far fewer restrictions to navigate when constructing new homes.

Large-scale computing facilities

Another main source of the growing demand for power is large-scale computing facilities such as data centers and cryptocurrency mining operations. These facilities consume large amounts of electricity to run and keep their computing equipment cool.

In 2022, in an effort to ensure grid reliability, ERCOT created a program to approve and monitor these large load (LFL) customers. The Large Flexible Load Task Force is a non-voting body that develops policy recommendations related to planning, markets, operations, and large load interconnection processes. LFL customers are those with an expected peak demand capacity of 75 megawatts or greater.

It is anticipated that electricity demand from customers identified by ERCOT as LFL will total 54 billion kilowatt-hours (kWh) in 2025, which is up almost 60% from the expected demand in 2024. If this comes to fruition, the demand from LFL customers would represent about 10% of the total forecast electricity consumption on the ERCOT grid this year. To accommodate the expected increase in power demand from large computing facilities, the state created the Texas Energy Fund, which provides grants and loans to finance the construction, maintenance, modernization, and operation of electric facilities in Texas. During this year’s 89th legislative session, lawmakers approved a major expansion of the Texas Energy Fund, allocating $5 billion more to help build new power plants and fund grid resilience projects.

Is solar power the key to stabilizing the grid?

The fastest-growing source of new electric generating capacity in the United States is solar power, and Texas stands as the second-highest producer of solar energy in the country.

On a regular day, solar power typically constitutes about 5% of the grid’s total energy output. However, during intense heat waves, when the demand for electricity spikes and solar conditions are optimal, the share of solar power can significantly increase. In such scenarios, solar energy’s contribution to the Texas grid can rise to as much as 20%, highlighting its potential to meet higher energy demands, especially during critical times of need.

While the benefits of solar power are numerous, such as reducing greenhouse gas emissions, lowering electricity bills, and promoting energy independence from the grid, it is important to acknowledge its barriers, such as:

  • Sunlight is intermittent and variable. Cloudy days, nighttime, and seasonal changes can affect energy production, requiring backup or storage solutions. Extreme weather conditions, such as hailstorms, can damage solar panels, affecting their performance and lifespan.
  • The upfront costs of purchasing and installing solar panels and associated equipment can be relatively high.
  • Large-scale solar installations may require significant land area, potentially leading to concerns about land use, habitat disruption, and conflicts with agricultural activities.
  • Integrating solar power into existing electricity grids can pose challenges due to its intermittent nature. Upgrading and modifying grids to handle distributed generation can be costly.

Although Texas has made progress in expanding its power supply, the rapid pace of population growth, homebuilding, and large-scale computing facilities presents challenges for grid stability. The gap between energy supply and demand needs to continue to be addressed with proactive planning. While solar power is a promising solution, there are realistic limitations to consider. A diversified approach that includes both renewable and traditional energy sources, along with ongoing legislative movement, is critical to ensuring a resilient energy future for Texas.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

Texas fell four spots on WalletHub's annual Greenest States report. Photo via Pexels

Texas falls lower on national ranking of greenest states for 2025

room to improve

Texas dropped in the rankings on WalletHub's Greenest States 2025 report.

The report, released last month, considered 28 relevant metrics—from air and water quality to the number of alternative fuel stations and green buildings per capita—to call out states doing the best (and worst) jobs of caring for the environment.

Texas came in at No. 42 out of 50, with a total score of 42.54 out of 100. Last year, the Lone Star State ranked No. 38 with a score of 50.40 based on 25 metrics.

Texas' poor ranking was driven by its last-placed ranking, coming in at No. 50, for overall environmental quality. It was tied for No. 45 for air quality and ranked No. 46 for water quality, which helped comprise the overall environmental quality score.

Other metrics fell closer toward the middle of the pack. The state ranked No. 32 for eco-friendly behaviors and No. 39 for climate-change contributions.

California also fell on the annual report. While the state claimed the top spot in 2024, it came in at No. 7 this year. Vermont, which came in second in 2024, was named the greenest state in 2025.

Hawaii, which didn't crack the top five last year, was ranked No. 2 on the 2025 report. New York, Maryland and Maine rounded out the top five this year.

West Virginia was the country's least green state again this year, followed by Louisiana, Kentucky, Alabama and Mississippi.

The report also showed that Democrat-led states ranked around No. 12 on average, whereas Republican states fell at around No. 33.

While the WalletHub report seems bleak for Texas, others have shown more positive signs for the state. Texas was ranked slightly above average in a recent ranking of the best states for sustainable development. A recently released U.S. Energy Storage Monitor shows that Texas led all states and surpassed California in the fourth quarter of 2024 by installing 1.2 gigawatts of utility-scale energy storage for solar and wind power.

Still, WalletHub also recently ranked Houston No. 98 out of 100 of the largest cities on its Greenest Cities in America report. Read more here.

Source: WalletHub
Texas ranked 24th on SmileHub's list of the best states for sustainable development. Photo via Getty Images.

New report ranks Texas in the middle for sustainable development

room to improve

Texas appears in the middle of the pack in a new ranking of the best states for sustainable development.

SmileHub, a nonprofit that rates charities, examined 20 key metrics to create its list of the best states for sustainable development. Among the metrics it studied were the share of urban tree cover, green buildings per capita and clean energy jobs per capita. Once SmileHub crunched all the numbers, it put Texas in 24th place — one notch above average.

The United Nations defines sustainable development as “meeting present needs without compromising the chances of future generations to meet their needs.”

Here’s how Texas fared in several of SmileHub’s ranking categories:

  • No. 2 for water efficiency and sustainability
  • No. 7 for presence of wastewater reuse initiatives
  • No. 18 for environmental protection charities per capita
  • No. 25 for green buildings per capita
  • No. 34 for clean energy jobs per capita
  • No. 34 for industrial toxins per square mile
  • No. 38 for share of tree cover in urban areas

California leads the SmileHub list, followed by Vermont, Massachusetts, Oregon and Maryland.

When it comes to water, a 2024 report commissioned by Texas 2036, a nonpartisan think tank, recommends that Texas invest $154 billion over the next 50 years in new water supply and infrastructure to support sustainable growth, according to the Greater Houston Partnership.

“The report underscores a stark reality: a comprehensive, sustainable funding strategy for water is necessary to keep Texas economically resilient and competitive,” the partnership says.

Ørsted, which maintains offices in Houston and Austin, just flipped the switch on its 468-megawatt Mockingbird Solar Center in Lamar County, a project that also established a nearby nature preserve. Photo courtesy of Ørsted

Danish renewable company’s largest solar project to power Texas grid, preserve prairie habitat

seeds planted

The largest solar project in the global portfolio of Danish renewable energy company Ørsted is now supplying power to the Electric Reliability Council of Texas (ERCOT) grid.

Ørsted, which maintains offices in Houston and Austin, just flipped the switch on its 468-megawatt Mockingbird Solar Center in Lamar County, which is northeast of Dallas-Fort Worth and directly south of the Texas-Oklahoma border. The $500 million project can produce enough power for 80,000 homes and businesses.

ERCOT provides power to more than 25 million Texas customers, representing 90 percent of the state’s electric load.

In conjunction with the solar project, Ørsted donated 953 acres to The Nature Conservancy to establish the Smiley Meadow Preserve. This area, adjacent to the Mockingbird facility, protects a tallgrass prairie habitat featuring more than 400 species of grasses and wildflowers. Accounting for land already owned by the conservancy, Smiley Meadow exceeds 1,000 acres.

“Through the power of partnership, Ørsted has helped The Nature Conservancy protect an irreplaceable landscape that might otherwise have been lost to development,” Suzanne Scott, The Nature Conservancy’s Texas state director, says in a news release.

Mockingbird Solar Center is part of Ørsted’s $20 billion investment in U.S. energy generation. With this project now online, Ørsted owns a portfolio of more than six gigawatts of onshore wind, solar, and battery storage projects that either are operating or are being built.

Plug and Play is opening a Sugar Land hub to accelerate startups and innovation across smart cities, energy, health, and mobility sectors. Photo courtesy of Plug and Play

Global organization unveils new location in Houston suburb to drive energy transition innovation and beyond

moving in

Leading innovation platform Plug and Play announced the opening of its new flagship Houston-area location in Sugar Land, which is its fourth location in Texas.

Plug and Play has accelerated over 2,700 startups globally last year with corporate partners that include Dell Technologies, Daikin, Microsoft, LG Chem, Shell, and Mercedes. The company’s portfolio includes PayPal, Dropbox, LendingClub, and Course Hero, with 8 percent of the portfolio valued at over $100 million.

The deal, which facilitated by the Sugar Land Office of Economic Development and Tourism, will bring a new office for the organization to Sugar Land Town Square with leasing and hiring between December and January.

The focus will be on “smart cities,” which include energy, health, transportation, and mobility sectors. The official launch is slated for the first quarter of 2025, and will feature 15 startups announced on Selection Day.

"By expanding to Sugar Land, we’re creating a space where startups can access resources, build partnerships, and scale rapidly,” VP Growth Strategy at Plug and Play Sherif Saadawi says in a news release. “This location will help fuel Texas' innovation ecosystem, providing entrepreneurs with the tools and networks they need to drive real-world impact and contribute to the state’s technological and economic growth."

Plug and Play plans to hire four full-time equivalent employees and accelerate two startup batches per year. One Sugar Land City representative will serve as a board member.

“We are excited to welcome Plug and Play to Sugar Land,” Mayor of Sugar Land Joe Zimmerma adds. “This investment will help us connect with corporate contacts and experts in startups and businesses that would take us many years to reach on our own. It allows us to create a presence, attract investments and jobs to the city, and hopefully become a base of operations for some of these high-growth companies.”

The organization originally entered the Houston market in 2019 and now has locations in Bryan/College Station, Frisco, and Cedar Park in Texas.

———

This article originally ran on InnovationMap.

A new report ranks Texas as one of the least cycling-friendly states in the U.S., citing poor infrastructure, limited bike routes, and low safety measures, highlighting the need for improved sustainable transportation. Photo by Photo Mizuno K/Pexels

Report: Texas trails behind in cycling safety, sustainability

share the road

In what will come as no surprise to cyclists around Houston, the state of Texas is not a good place for bicycle riding. According to a new report of the "Most Cycling-Friendly States in the U.S.," Texas comes in at No. 47 — meaning that only three other states are worse.

The report, from Philadelphia personal injury law firm KaplunMarx, examines all 50 states based on six metrics: Air quality index, the number of cyclist deaths per one million residents, bike routes per square mile, local government actions supporting cycling, federal funding for cycling projects, and bicycle laws.

Texas musters a mere 31 points out of 100 for its "cycling friendly score."

The most cycling friendly state in the U.S.: Minnesota, which earned 84 points to claim the title.

According to the report's findings, there have been 15 local government actions per capita in Texas that integrate pedestrians and cyclists in transportation projects. Texas' has a 41 air quality index value, and there are approximately 1.2 bike routes per 1,000 square miles in the state.

On cyclist deaths, Texas does a little better, with three cyclist deaths per one million residents in Texas — about nine percent lower than the national average.

According to KaplunMarx founding partner Ted Kaplun, there is an average of 857 cyclist fatalities in the U.S. every year. He adds that every measure or community effort to improve cyclist-friendliness is beneficial for all Americans.

"It's crucial for all states to continually assess and enhance their cycling provisions, learning from both high-ranking peers and their own experiences," he says.

Top-ranking Minnesota has only one cyclist death per one million state residents. It also has about 27.2 bike routes per 1,000 square miles.

After Minnesota, the remaining top five best states for cyclists are Massachusetts (No. 2), Rhode Island (No. 3), Washington (No. 4), and Iowa (No. 5).

At the bottom of the list are Nevada (No. 48), Arizona (No. 49), and Utah (No. 50) — all of which performed far worse than Texas to be declared the three least cycling-friendly states.

The entire country still has areas for improvement when it comes to creating a safer environment for cyclists, regardless of where each state landed on the list, according to Kaplun.

"With over 53 million Americans riding bicycles regularly, the importance of cycling-friendly infrastructure and safety measures cannot be overstated," said Kaplun in the report. "This isn't just about rankings – it's about enhancing the quality of life, promoting sustainable transportation, and most crucially, saving lives."

———

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice research team's study keeps CO2-to-fuel devices running 50 times longer

new findings

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.

The case for smarter CUI inspections in the energy sector

Guest Column

Corrosion under insulation (CUI) accounts for roughly 60% of pipeline leaks in the U.S. oil and gas sector. Yet many operators still rely on outdated inspection methods that are slow, risky, and economically unsustainable.

This year, widespread budget cuts and layoffs across the sector are forcing refineries to do more with less. Efficiency is no longer a goal; it’s a mandate. The challenge: how to maintain safety and reliability without overextending resources?

Fortunately, a new generation of technologies is gaining traction in the oil and gas industry, offering operators faster, safer, and more cost-effective ways to identify and mitigate CUI.

Hidden cost of corrosion

Corrosion is a pervasive threat, with CUI posing the greatest risk to refinery operations. Insulation conceals damage until it becomes severe, making detection difficult and ultimately leading to failure. NACE International estimates the annual cost of corrosion in the U.S. at $276 billion.

Compounding the issue is aging infrastructure: roughly half of the nation’s 2.6 million miles of pipeline are over 50 years old. Aging infrastructure increases the urgency and the cost of inspections.

So, the question is: Are we at a breaking point or an inflection point? The answer depends largely on how quickly the industry can move beyond inspection methods that no longer match today's operational or economic realities.

Legacy methods such as insulation stripping, scaffolding, and manual NDT are slow, hazardous, and offer incomplete coverage. With maintenance budgets tightening, these methods are no longer viable.

Why traditional inspection falls short

Without question, what worked 50 years ago no longer works today. Traditional inspection methods are slow, siloed, and dangerously incomplete.

Insulation removal:

  • Disruptive and expensive.
  • Labor-intensive and time-consuming, with a high risk of process upsets and insulation damage.
  • Limited coverage. Often targets a small percentage of piping, leaving large areas unchecked.
  • Health risks: Exposes workers to hazardous materials such as asbestos or fiberglass.

Rope access and scaffolding:

  • Safety hazards. Falls from height remain a leading cause of injury.
  • Restricted time and access. Weather, fatigue, and complex layouts limit coverage and effectiveness.
  • High coordination costs. Multiple contractors, complex scheduling, and oversight, which require continuous monitoring, documentation, and compliance assurance across vendors and protocols drive up costs.

Spot checks:

  • Low detection probability. Random sampling often fails to detect localized corrosion.
  • Data gaps. Paper records and inconsistent methods hinder lifecycle asset planning.
  • Reactive, not proactive: Problems are often discovered late after damage has already occurred.

A smarter way forward

While traditional NDT methods for CUI like Pulsed Eddy Current (PEC) and Real-Time Radiography (RTR) remain valuable, the addition of robotic systems, sensors, and AI are transforming CUI inspection.

Robotic systems, sensors, and AI are reshaping how CUI inspections are conducted, reducing reliance on manual labor and enabling broader, data-rich asset visibility for better planning and decision-making.

ARIX Technologies, for example, introduced pipe-climbing robotic systems capable of full-coverage inspections of insulated pipes without the need for insulation removal. Venus, ARIX’s pipe-climbing robot, delivers full 360° CUI data across both vertical and horizontal pipe circuits — without magnets, scaffolding, or insulation removal. It captures high-resolution visuals and Pulsed Eddy Current (PEC) data simultaneously, allowing operators to review inspection video and analyze corrosion insights in one integrated workflow. This streamlines data collection, speeds up analysis, and keeps personnel out of hazardous zones — making inspections faster, safer, and far more actionable.

These integrated technology platforms are driving measurable gains:

  • Autonomous grid scanning: Delivers structured, repeatable coverage across pipe surfaces for greater inspection consistency.
  • Integrated inspection portal: Combines PEC, RTR, and video into a unified 3D visualization, streamlining analysis across inspection teams.
  • Actionable insights: Enables more confident planning and risk forecasting through digital, shareable data—not siloed or static.

Real-world results

Petromax Refining adopted ARIX’s robotic inspection systems to modernize its CUI inspections, and its results were substantial and measurable:

  • Inspection time dropped from nine months to 39 days.
  • Costs were cut by 63% compared to traditional methods.
  • Scaffolding was minimized 99%, reducing hazardous risks and labor demands.
  • Data accuracy improved, supporting more innovative maintenance planning.

Why the time is now

Energy operators face mounting pressure from all sides: aging infrastructure, constrained budgets, rising safety risks, and growing ESG expectations.

In the U.S., downstream operators are increasingly piloting drone and crawler solutions to automate inspection rounds in refineries, tank farms, and pipelines. Over 92% of oil and gas companies report that they are investing in AI or robotic technologies or have plans to invest soon to modernize operations.

The tools are here. The data is here. Smarter inspection is no longer aspirational — it’s operational. The case has been made. Petromax and others are showing what’s possible. Smarter inspection is no longer a leap but a step forward.

---

Tyler Flanagan is director of service & operations at Houston-based ARIX Technologies.