Lydian Energy has secured financing for three battery storage system projects in Texas. Photo via Getty Images.

The Electricity Reliability Council of Texas’ grid will get a boost courtesy of Lydian Energy.

The D.C.-based company announced the successful financial close of its first institutional project financing totaling $233 million, backed by ING Group and KeyBank. The financing will support three battery energy storage system (BESS) projects in Texas.

Lydian is an independent power producer that specializes in the development, construction and operation of utility-scale solar and battery energy storage projects. The company reports that it plans to add 550 megawatts of energy—which can power approximately 412,500 homes—to the Texas grid administered by ERCOT.

“This financing marks an important step forward as we continue executing on our vision to scale transformative battery storage projects that meet the evolving energy needs of the communities we serve,” Emre Ersenkal, CEO at Lydian Energy, said in a news release.

The projects include:

Pintail

  • Located in San Patricio county
  • 200 megawatts
  • Backed by ING

Crane

  • Located in Crane county
  • 200 megawatts
  • Backed by ING

Headcamp

  • Located in Pecos county
  • 150 megawatts
  • Backed by KeyBank

ING served as the lender for Pintail and Crane projects valued at a combined total of approximately $139 million.

KeyBank provided a $94 million financing package for the Headcamp project. KeyBanc Capital Markets also structured the financing package for Headcamp.

The three projects are being developed under Excelsior Energy Capital’s Fund II. Lydian’s current portfolio comprises 20 solar and storage projects, totaling 4.7 gigawatts of capacity.

“Our support of Lydian’s portfolio reflects ING’s focus on identifying strategic funding opportunities that align with the accelerating demand for sustainable power,” Sven Wellock, managing director and head of energy–renewables and power at ING, said in the release. “Battery storage plays a central role in supporting grid resilience, and we’re pleased to back a platform with strong fundamentals and a clear execution path.”

The facilities are expected to be placed in service by Q4 2025. Lydian is also pursuing additional financing for further projects, which are expected to commence construction by the end of 2025.

“These financings represent more than capital – they reflect the strong demand for reliable energy infrastructure in high-growth U.S. markets,” Anne Marie Denman, co-founding partner at Excelsior Energy Capital and chair of the board at Lydian Energy, added in the news release. “We’re proud to stand behind Lydian’s talented team as they deliver on the promise of battery storage with bankable projects, proven partners, and disciplined execution. In the midst of a lot of noise, these financings are a reminder that capital flows where infrastructure is satisfying fundamental needs of our society – in this case, the need for reliable, sustainable, domestic, and affordable energy.”

Thanks to a new partnership, Engie North America plans to add 'precycling' provisions to power purchase agreements on projects in the Midwest. Photo via Getting Images.

Engie to add 'precycling' agreements for forthcoming solar projects

reduce, reuse

Houston-based Engie North America has partnered with Arizona-based Solarcycle to recycle 1 million solar panels on forthcoming projects with a goal of achieving project circularity.

The collaboration allows Engie to incorporate "precycling" provisions into power purchase agreements made on 375 megawatts worth of projects in the Midwest, which are expected to be completed in the next few years, according to a news release from Engie.

Engie will use Solarcycle's advanced tracking capabilities to ensure that every panel on the selected projects is recycled once it reaches its end of life, and that the recovered materials are returned to the supply chain.

Additionally, all construction waste and system components for the selected projects will be recycled "to the maximum degree possible," according to Engie.

“We are delighted to bring this innovative approach to life. Our collaboration with Solarcycle demonstrates the shared commitment we have to the long-term sustainability of our industry,” Caroline Mead, SVP power marketing at ENGIE North America, said in the release.

Solarcyle, which repairs, refurbishes, reuses and recycles solar power systems, estimates that the collaboration and new provisions will help divert 48 million pounds of material from landfills and avoid 33,000 tons of carbon emissions.

“ENGIE’s precycling provision sets a new precedent for the utility-scale solar industry by proving that circular economy principles can be achieved without complex regulatory intervention and in a way that doesn’t require an up-front payment," Jesse Simons, co-founder and chief commercial officer at SOLARCYCLE, added in the release. "We’re happy to work creatively with leaders like ENGIE to support their commitment to circularity, domestic energy, and sustainability.”

TotalEnergies has started up two new solar farms in Texas. Photo by Red Zeppelin/Pexels

TotalEnergies powers up its largest utility-scale solar farms in Texas

ready to shine

TotalEnergies has begun the commercial operations of two utility-scale solar farms with integrated battery storage located in southeast Texas.

The two farms are located in Cottonwood and Danish Fields, which is TotalEnergies’ largest solar farm in the United States.

“The start-ups of Danish Fields and Cottonwood in the fast-growing ERCOT market showcase TotalEnergies’ ability to deliver competitive renewable electricity to support our clients’ decarbonization goals, as well as our own,” Olivier Jouny, senior vice president of renewables at TotalEnergies, says in a news release.

The new projects have a combined capacity of 1.2 gigawatts. They are part of a portfolio of renewable assets totaling 4 gigawatts in operation or under construction currently in Texas. Danish Fields holds a capacity of 720 megawatts peak and 1.4 million ground-mounted photovoltaic panels.

Cottonwood, with a capacity of 455 megawatts peak featuring over 847,000 ground-mounted photovoltaic panels, will also feature 225 megawatt hours of battery storage supplied by Saft. This is scheduled for commissioning in 2025. The electricity production is contracted under long-term PPAs indexed to “merchant prices through an upside-sharing mechanism with LyondellBasell and Saint-Gobain,” per thenews release. The deal is to help support the companies’ decarbonization efforts.

Seventy percent of Danish’s solar capacity has been contracted through long-term Corporate Power Purchase Agreements signed with Saint-Gobain, which feature an upside sharing mechanism indexed on merchant price. The other 30 percent is intended to support the decarbonization of TotalEnergies’ industrial plants in the Gulf Coast region. The projects will cover the electricity consumption of TotalEnergies’ industrial sites in Port Arthur and La Porte in Texas, and Carville in Louisiana, which include Myrtle Solar that was commissioned in 2023 and the under-construction Hill 1 solar farm.

In addition to the solar farms, TotalEnergies has also added 1.5 gigawatt of flexible power production capacity with three gas-fired power plants they acquired in Texas.

“Thanks to these projects, we are delighted to take another step in delivering our strategy across the entire value chain, from power generation to customer delivery, in order to achieve our profitability target of 12 (percent return on average capital employed) in our Integrated Power business,” Jouny adds in the release.

Texas has the most utility-scale solar capacity installed and is home to 20 percent of the overall U.S. solar fleet. Photo via Getty Images

Texas passes California on national report of top solar states

by the numbers

For the first time, Texas has passed California in the second quarter of 2024 to become the top solar state in the country.

The American Clean Power Association's quarterly market report found that, by adding 3,293 megawatts of new solar year-to-date, Texas has the most utility-scale solar capacity installed, comprising 20 percent of the overall U.S. solar fleet. The American Clean Power Association, which represents over 800 energy storage, wind, utility-scale solar, transmission, and clean hydrogen companies, found that Texas is home to 21,932 megawatts of capacity,

By utilizing clean energy initiatives, Texas included 1.6 gigawatts of new solar, 574 megawatts of storage, and 366 megawatts of onshore wind. With more than 28,000 megawatts, Texas had the highest volume of clean power development capacity in the second quarter. About 163,000 megawatts of capacity overall are in the works throughout the United States. Texas ranks No. 1 for total operating wind capacity and total operating solar capacity, and comes in second for operating storage capacity.

Texas again led in production levels with clean power construction projects nationally, which boasts more than 19,000 megawatts worth of clean power energy currently under construction. With almost 28.3 gigawatts in advanced development or under construction, Texas continues to come in at No.1, as California is next with over 16.4 gigawatts in the state’s project pipeline.

California added more than 1,900 megawatts of new clean power capacity in the second quarter, with its clean energy development behavior leaning more towards adding storage, which amounts to 60 percent of California’s year-to-date clean power installations.

According to the report from SmartAsset, the Lone Star State has the most clean energy capacity at 56,405 megawatts due to its sheer size for solar capacity, but continues to trail states with similar geographic characteristics in overall clean energy prevalence.

Another report published by the U.S. Energy Information Administration, says Texas will make up 35 percent of new utility-scale solar capacity in the U.S. this year, followed by California (10 percent) and Florida (6 percent).

While Texas’ solar efforts have shown positive trends, the state ranked No. 38 in a report by WalletHub that determined it was the thirteenth least green state.

Primergy says Gemini is the biggest solar-and-storage duo in the U.S. Photo via primergysolar.com

Houston firm's portfolio co. goes online with solar, energy storage facility in Nevada

powering on

A portfolio company of Quinbrook Infrastructure Partners, an energy-focused investment manager with U.S. offices in Houston and New York, has flipped the switch on its solar power and battery energy storage system in Nevada’s Mojave Desert.

The portfolio company, Oakland, California-based Primergy Solar, says its Gemini Solar + Storage project near Las Vegas is now fully operational.

Gemini’s 1.8 million solar panels can generate up to 690 megawatts of power, enough to meet 10 percent of Nevada’s peak power demand. The panels are paired with 380 megawatts of four-hour battery storage.

“Gemini creates a blueprint for holistic and innovative clean energy development at mega scale, and we are proud to have brought this milestone project to life and to have delivered so many positive impacts across job creation, environmental stewardship, and local community engagement,” David Scaysbrook, co-founder and managing partner of Quinbrook, says in a news release.

Primergy says Gemini is the biggest solar-and-storage duo in the U.S.

“Achieving full commercial operations marks a significant technical and financial milestone for our team. We successfully navigated challenging supply chain and inflation issues through proactive planning and collaboration to bring this project online,” Primergy CEO Ty Daul says.

Primergy develops, owns, and operates utility-scale solar power and battery storage projects across the U.S. It manages projects in several U.S. energy markets, including the one served by the Electric Reliability Council of Texas (ERCOT).

As Gemini was taking shape, Primergy and Quinbrook closed on $1.9 billion in debt and tax equity financing for construction and development.

In October 2022, APG, the largest pension asset manager in the Netherlands, acquired a 49 percent ownership stake in Gemini on behalf of pension fund client ABP.

In April 2024, the remaining 51 percent share of the project was acquired by the $600 million Quinbrook Valley of Fire Fund. Funds associated with Blackstone Strategic Partners and Ares Management Infrastructure Secondaries were the lead investors.

The GridStor project will boost the Electric Reliability Council of Texas grid. It’s GridStor’s first acquisition in ERCOT territory. Photo via gridstor.com

Oregon energy storage company plans 450-megawatt facility in Galveston County

coming soon

An Oregon startup has purchased a 450-megawatt battery energy storage project in Galveston County.

GridStor, a Portland, Oregon-based developer and operator of battery energy storage systems, bought the project from Moab, Utah-based Balanced Rock Power. The Utah company develops utility-scale solar and energy storage projects.

Financial terms of the deal weren’t disclosed.

GridStor, founded in 2022, is backed by Goldman Sachs Asset Management. The Portland Business Journal reported last November that Goldman Sachs had raised a $410 million fund to fuel its energy storage strategy.

Construction on the Evelyn Battery Energy Storage project is scheduled to get underway this summer, with the system projected to go online in the spring of 2025.

“Battery storage is a scalable and near-term solution to powering historic load growth in Texas,” Chris Taylor, CEO of GridStor, says in a news release. “Every day, batteries are consistently providing energy to stabilize the power system and meet hours of greatest demand in the state.”

The GridStor project will boost the Electric Reliability Council of Texas (ERCOT) grid. It’s GridStor’s first acquisition in ERCOT territory.

The project will be built near the Hidden Lakes substation, which is owned by Texas-New Mexico Power, which now just serves Texas. This proximity will enable batteries to quickly begin grid-connected operations.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

6 major acquisitions that fueled the Houston energy sector in 2025

2025 In Review

Editor's note: As 2025 comes to a close, we're revisiting the biggest headlines and major milestones of the energy transition sector this year. Here are six major acquisitions that fueled the Houston energy industry in 2025:

Houston-based Calpine Corp. to be acquired in clean energy megadeal

Houston's Calpine Corp. will be acquired by Baltimore-based nuclear power company Constellation Energy Corp. Photo via DOE

In January 2025, Baltimore-based nuclear power company Constellation Energy Corp. and Houston-based Calpine Corp. entered into an agreement where Constellation would acquire Calpine in a cash and stock transaction with an overall net purchase price of $26.6 billion. The deal received final regulatory clearance this month.

Investment giant to acquire TXNM Energy for $11.5 billion

Blackstone Infrastructure, an affiliate of Blackstone Inc., will acquire a major Texas electricity provider. Photo via Shutterstock

In May 2025, Blackstone Infrastructure, an investment giant with $600 million in assets under management, agreed to buy publicly traded TXNM Energy in a debt-and-stock deal valued at $11.5 billion. The deal recently cleared a major regulatory hurdle, but still must be approved by the Public Utility Commission of Texas.

Houston's Rhythm Energy expands nationally with clean power acquisition

PJ Popovic, founder and CEO of Houston-based Rhythm Energy, which has acquired Inspire Clean Energy. Photo courtesy of Rhythm

Houston-based Rhythm Energy Inc. acquired Inspire Clean Energy in June 2025 for an undisclosed amount. The deal allowed Rhythm to immediately scale outside of Texas and into the Northeast, Midwest and mid-Atlantic regions.

Houston American Energy closes acquisition of New York low-carbon fuel co.

Houston American Energy Corp. has acquired Abundia Global Impact Group, which converts plastic and certified biomass waste into high-quality renewable fuels. Photo via Getty Images.

Renewable energy company Houston American Energy Corp. (NYSE: HUSA) acquired Abundia Global Impact Group in July 2025. The acquisition created a combined company focused on converting waste plastics into high-value, drop-in, low-carbon fuels and chemical products.

Chevron gets green light on $53 billion Hess acquisition

With the deal, Chevron gets access to one of the biggest oil finds of the decade. Photo via Chevron

In July 2025, Houston-based Chevron scored a critical ruling in Paris that provided the go-ahead for a $53 billion acquisition of Hess and access to one of the biggest oil finds of the decade. Chevron completed its acquisition of Hess shortly after the ruling from the International Chamber of Commerce in Paris.

Investors close partial acquisition of Phillips 66 subsidiary with growing EV network

Two investment firms have scooped up the majority stake in JET, a subsidiary of Phillips 66 with a rapidly growing EV charging network. Photo via Jet.de Facebook.

In December 2025, Energy Equation Partners, a London-based investment firm focused on clean energy companies, and New York-based Stonepeak completed the acquisition of a 65 percent interest in JET Tankstellen Deutschland GmbH, a subsidiary of Houston oil and gas giant Phillips 66.

Houston researchers develop energy-efficient film for AI chips

AI research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

---

This article originally appeared on our sister site, InnovationMap.

Energy expert: What 2025 revealed about the evolution of Texas power

guest column

2025 marked a pivotal year for Texas’ energy ecosystem. Rising demand, accelerating renewable integration, tightening reserve margins and growing industrial load reshaped the way policymakers, utilities and the broader market think about reliability.

This wasn’t just another year of operational challenges; it was a clear signal that the state is entering an era where growth and innovation must move together in unison if Texas is going to keep pace.

What happened in 2025 is already influencing the decisions utilities, regulators and large energy consumers will make in 2026 and beyond. If Texas is going to remain the nation’s proving ground for large-scale energy innovation, this year made one thing clear: we need every tool working together and working smarter.

What changed: Grid, policy & the growth of renewables

This year, ERCOT recorded one of the steepest demand increases in its history. From January through September 2025, electricity consumption reached 372 terawatt-hours (TWh), a 5 percent increase over the previous year and a 23 percent jump since 2021. That growth officially positions ERCOT as the fastest-expanding large grid in the country.

To meet this rising load, Texas leaned heavily on clean energy. Solar, wind and battery storage served approximately 36 percent of ERCOT’s electricity needs over the first nine months of the year, a milestone that showcased how quickly Texas has diversified its generation mix. Utility-scale solar surged to 45 TWh, up 50 percent year-over-year, while wind generation reached 87 TWh, a 36 percent increase since 2021.

Battery storage also proved its value. What was once niche is now essential: storage helped shift mid-day excess solar to evening peaks, especially during a historic week in early spring when Texas hit new highs for simultaneous wind, solar and battery output.

Still, natural gas remained the backbone of reliability. Dispatchable thermal resources supplied more than 50 percent of ERCOT’s power 92 percent of the time in Q3 2025. That dual structure of fast-growing renewables backed by firm gas generation is now the defining characteristic of Texas’s energy identity.

But growth cuts both ways. Intermittent generation is up, yet demand is rising faster. Storage is scaling, but not quite at the rate required to fill the evening reliability gap. And while new clean-energy projects are coming online rapidly, the reality of rising population, data center growth, electrification and heavy industrial expansion continues to outpace the additions.

A recent forecast from the Texas Legislative Study Group projects demand could climb another 14 percent by mid-2026, tightening reserve margins unless meaningful additions in capacity, or smarter systemwide usage, arrive soon.

What 2025 meant for the energy ecosystem

The challenges of 2025 pushed Texas to rethink reliability as a shared responsibility between grid operators, generation companies, large load customers, policymakers and consumers. The year underscored several realities:

1. The grid is becoming increasingly weather-dependent. Solar thrives in summer; wind dominates in spring and winter. But extreme heat waves and cold snaps also push demand to unprecedented levels. Reliability now hinges on planning for volatility, not just averages.

2. Infrastructure is straining under rapid load growth. The grid handled multiple stress events in 2025, but it required decisive coordination and emerging technologies, such as storage methods, to do so.

3. Innovation is no longer optional. Advanced forecasting, grid-scale batteries, demand flexibility tools, and hybrid renewable-gas portfolios are now essential components of grid stability.

4. Data centers and industrial electrification are changing the game. Large flexible loads present both a challenge and an opportunity. With proper coordination, they can help stabilize the grid. Without it, they can exacerbate conditions of scarcity.

Texas can meet these challenges, but only with intentional leadership and strong public-private collaboration.

The system-level wins of 2025

Despite volatility, 2025 showcased meaningful progress:

Renewables proved their reliability role. Hitting 36 percent of ERCOT’s generation mix for three consecutive quarters demonstrates that wind, solar and batteries are no longer supplemental — they’re foundational.

Storage emerged as a real asset for reliability. Battery deployments doubled their discharge records in early 2025, showing the potential of short-duration storage during peak periods.

The dual model works when balanced wisely. Natural gas continues to provide firm reliability during low-renewable hours. When paired with renewable growth, Texas gains resilience without sacrificing affordability.

Energy literacy increased across the ecosystem. Communities, utilities and even industrial facilities are paying closer attention to how loads, pricing signals, weather and grid conditions interact—a necessary cultural shift in a fast-changing market.

Where Texas goes in 2026

Texas heads into 2026 with several unmistakable trends shaping the road ahead. Rate adjustments will continue as utilities like CenterPoint request cost recovery to strengthen infrastructure, modernize outdated equipment and add the capacity needed to handle record-breaking growth in load.

At the same time, weather-driven demand is expected to stay unpredictable. While summer peaks will almost certainly set new records, winter is quickly becoming the bigger wild card, especially as natural gas prices and heating demand increasingly drive both reliability planning and consumer stress.

Alongside these pressures, distributed energy is set for real expansion. Rooftop solar, community battery systems and hybrid generation-storage setups are no longer niche upgrades; they’re quickly becoming meaningful grid assets that help support reliability at scale.

And underlying all of this is a cultural shift toward energy literacy. The utilities, regulators, businesses, and institutions that understand load flexibility, pricing signals and efficiency strategies will be the ones best positioned to manage costs and strengthen the grid. In a market that’s evolving this fast, knowing how we use energy matters just as much as knowing how much.

The big picture: 2025 as a blueprint for a resilient future

If 2025 showed us anything, it’s that Texas can scale innovation at a pace few states can match. We saw record renewable output, historic storage milestones and strong thermal performance during strain events. The Texas grid endured significant stress but maintained operational integrity.

But it also showed that reliability isn’t a static achievement; it’s a moving target. As population growth, AI and industrial electrification and weather extremes intensify, Texas must evolve from a reactive posture to a proactive one.

The encouraging part is that Texas has the tools, the talent and the market structure to build one of the most resilient and future-ready power ecosystems in the world. The test ahead isn’t whether we can generate enough power; it’s whether we can coordinate systems, technologies and market behavior fast enough to meet the moment.

And in 2026, that coordination is precisely where the opportunity lies.

———

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.