dream team

NRG Energy partners to launch Texas' largest AI-powered virtual power plant

NRG and Renew Home expect the virtual power plant program to arrive for Texas customers in spring of 2025. Photo via Getty Images

NRG Energy is partnering with a virtual power plant company to distribute hundreds of thousands of VPP-enabled smart thermostats by 2035 in an overall effort to improve the Texas grid's resiliency and help households manage and lower their energy costs.

Renew Home will create a nearly 1 gigawatt AI-powered VPP, which will be enabled by Google Cloud technology and be the largest AI-enabled VPP in Texas. NRG and Renew Home expect the VPP program to arrive for Texas customers in spring of 2025.

A 1 gigawatt VPP can deliver a capacity that is equivalent to 200,000 homes during peak demand times. NRG and Renew Home plan to offer Vivint and Nest smart thermostats, which will include professional installation at no cost to eligible customers as part of the goal to build the VPP.

The advanced thermostats can make automatic HVAC adjustments that can help customers shift their energy use to times when electricity is less expensive, and cleaner. The program will combine smart devices, energy intelligence, and AI. The companies expect to add devices like batteries and electric vehicles to the VPP.

“By partnering with industry leaders like Renew Home and Google Cloud, we are set to deliver cutting-edge, AI-driven solutions that will bolster grid resilience and contribute to a more sustainable future,” Rasesh Patel, president of NRG Consumer, says in a news release. “We are excited about the transformative impact this collaboration will have on our customers and the broader energy landscape.”

NRG will also be utilizing the multi-year technology transformation with Google Cloud. NRG will be able to better predict weather conditions, forecast wind and solar generation output, and create predictive pricing models through the use of Google Cloud's data, analytics, and AI technology.

"As we move toward a more sustainable future and face increasing energy demands, Google Cloud recognizes the importance of partnering with innovators like NRG and Renew Home to help transform the consumer energy experience with AI and the best of Google Cloud,” Michael Clark, president - North America at Google Cloud, adds. "Our collaboration will help Texas meet its growing energy demands, and also empower consumers to get more from their energy, smart home, and essential home services in the future.”

Texas reached an unprecedented demand surge of 85 gigawatts in 2023.

“As rapid population growth and weather events create new challenges for meeting demand in ERCOT, VPPs can deliver a reliable, flexible and dispatchable energy resource,” Renew Home CEO Ben Brown continues. “NRG’s commitment to creating a more resilient and sustainable energy future while also making electricity bills more affordable makes them an ideal partner for co-developing this unique VPP program. This initiative raises the bar for future-proofing our electricity infrastructure and delivering cost savings to customers.”

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News