fresh funding

Houston-based autonomous trucking tech co. raises $20M

The Investment is expected to help expand Bot Auto's tech development in autonomous trucking that will focus on safety and operation efficiency. Photo courtesy of Bot Auto

A Houston-based autonomous vehicle technology company has raised early funding.

Bot Auto has announced the completion of its pre-series A funding round which was oversubscribed and raised $20 million. The round was led by investments from Brightway Future Capital, Cherubic Ventures, EnvisionX Capital, First Star Ventures, Linear Capital, M31 Capital, Taihill Venture, Uphonest Capital, and Welight Capital.

“As true believers in autonomous trucking, we're thankful for our investors' shared vision,” Xiaodi Hou, founder and CEO of Bot Auto, says in a news release. “Our strong commitment, combined with recent AI advancements and a sharpened focus on operational efficiency, has created a clear path to commercialization.”

The funds raised will be focused on developing the technology and will opt to avoid unnecessary hiring ahead of operational maturity, scaling the operational footprint prior to product readiness, over expansion and partnership debt. The company aims for a more sustainable and efficient future, and is hoping its engineers and AV executives help Bot Auto become an autonomous trucking game changer.

The Investment is expected to help expand Bot Auto's tech development in autonomous trucking that will focus on safety and operation efficiency.

“Our prospects for success have never been more promising,” Hou adds. “ We march forward, committed to bringing this transformative technology to humanity for a brighter future.”

Bot Auto’s vision aligns with the pioneering spirit of Houston’s legacy in space exploration, striving to achieve remarkable feats in technology and transportation. The company is dedicated to leveraging this investment to make significant strides in the US autonomous trucking industry, ultimately contributing to a more sustainable and efficient future.

———

This article originally ran on InnovationMap.

Trending News

A View From HETI

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

Trending News