Twenty-six Houston-area companies landed on the latest Fortune 500 list. Photo via Getty Images

Houston maintained its No. 3 status this year among U.S. metro areas with the most Fortune 500 headquarters. Fortune magazine tallied 26 Fortune 500 headquarters in the Houston area, behind only the New York City area (62) and the Chicago area (30).

Last year, 23 Houston-area companies landed on the Fortune 500 list. Fortune bases the list on revenue that a public or private company earns during its 2024 budget year.

On the Fortune 500 list for 2025, Spring-based ExxonMobil remained the highest-ranked company based in the Houston area as well as in Texas, sitting at No. 8 nationally. That’s down one spot from its No. 7 perch on the 2024 list. During its 2024 budget year, ExxonMobil reported revenue of $349.6 billion, up from $344.6 billion the previous year.

Here are the rankings and 2024 revenue for the 25 other Houston-area companies that made this year’s Fortune 500:

  • No. 16 Chevron, $202.8 billion
  • No. 28 Phillips 66, $145.5 billion
  • No. 56 Sysco, $78.8 billion
  • No. 75 Conoco Phillips, $56.9 million
  • No. 78 Enterprise Products Partners, $56.2 billion
  • No. 92 Plains GP Holdings, $50 billion
  • No. 143 Hewlett-Packard Enterprise, $30.1 billion
  • No. 153 NRG Energy, $28.1 billion
  • No. 155 Baker Hughes, $27.8 billion
  • No. 159 Occidental Petroleum, $26.9 billion
  • No. 183 EOG Resources, $23.7 billion
  • No. 184 Quanta Services, $23.7 billion
  • No. 194 Halliburton, $23 billion
  • No. 197 Waste Management, $22.1 billion
  • No. 214 Group 1 Automotive, $19.9 billion
  • No. 224 Corebridge Financial, $18.8 billion
  • No. 256 Targa Resources, $16.4 billion
  • No. 275 Cheniere Energy, $15.7 billion
  • No. 289 Kinder Morgan, $15.1 billion
  • No. 345 Westlake Corp., $12.1 billion
  • No. 422 APA, $9.7 billion
  • No. 443 NOV, $8.9 billion
  • No. 450 CenterPoint Energy, $8.6 billion
  • No. 474 Par Pacific Holdings, $8 billion
  • No. 480 KBR Inc., $7.7 billion

Nationally, the top five Fortune 500 companies are:

  • Walmart
  • Amazon
  • UnitedHealth Group
  • Apple
  • CVS Health

“The Fortune 500 is a literal roadmap to the rise and fall of markets, a reliable playbook of the world's most important regions, services, and products, and an indispensable roster of those companies' dynamic leaders,” Anastasia Nyrkovskaya, CEO of Fortune Media, said in a news release.

Among the states, Texas ranks second for the number of Fortune 500 headquarters (54), preceded by California (58) and followed by New York (53).

A new joint venture will work on four projects supplying 5 gigawatts of power from combined-cycle power plants for the ERCOT and PJM Interconnection grids. Photo via Getty Images.

NRG Energy forms joint venture to build power plants for ERCOT and AI-driven demand

teaming up

Houston-based power provider NRG Energy Inc. has formed a joint venture with two other companies to meet escalating demand for electricity to fuel the rise of data centers and the evolution of generative AI.

NRG’s partners in the joint venture are GE Vernova, a provider of renewable energy equipment and services, and TIC – The Industrial Co., a subsidiary of construction and engineering company Kiewit.

“The growing demand for electricity in part due to GenAI and the buildup of data centers means we need to form new, innovative partnerships to quickly increase America’s dispatchable generation,” Robert Gaudette, head of NRG Business and Wholesale Operations, said in a news release. “Working together, these three industry leaders are committed to executing with speed and excellence to meet our customers’ generation needs.”

Initially, the joint venture will work on four projects supplying 5 gigawatts of power from combined-cycle power plants, which uses a combination of natural gas and steam turbines that produce additional electricity from natural gas waste. Electricity from these projects will be produced for power grids operated by the Electric Reliability Council of Texas (ERCOT) and PJM Interconnection. The projects are scheduled to come online from 2029 through 2032.

The joint venture says the model it’s developing for these four projects is “replicable and scalable,” with the potential for expansion across the U.S.

The company is also developing a new 721-megawatt natural gas combined-cycle unit at its Cedar Bayou plant in Baytown, Texas. Read more here.

NRG and Renew Home expect the virtual power plant program to arrive for Texas customers in spring of 2025. Photo via Getty Images

NRG Energy partners to launch Texas' largest AI-powered virtual power plant

dream team

NRG Energy is partnering with a virtual power plant company to distribute hundreds of thousands of VPP-enabled smart thermostats by 2035 in an overall effort to improve the Texas grid's resiliency and help households manage and lower their energy costs.

Renew Home will create a nearly 1 gigawatt AI-powered VPP, which will be enabled by Google Cloud technology and be the largest AI-enabled VPP in Texas. NRG and Renew Home expect the VPP program to arrive for Texas customers in spring of 2025.

A 1 gigawatt VPP can deliver a capacity that is equivalent to 200,000 homes during peak demand times. NRG and Renew Home plan to offer Vivint and Nest smart thermostats, which will include professional installation at no cost to eligible customers as part of the goal to build the VPP.

The advanced thermostats can make automatic HVAC adjustments that can help customers shift their energy use to times when electricity is less expensive, and cleaner. The program will combine smart devices, energy intelligence, and AI. The companies expect to add devices like batteries and electric vehicles to the VPP.

“By partnering with industry leaders like Renew Home and Google Cloud, we are set to deliver cutting-edge, AI-driven solutions that will bolster grid resilience and contribute to a more sustainable future,” Rasesh Patel, president of NRG Consumer, says in a news release. “We are excited about the transformative impact this collaboration will have on our customers and the broader energy landscape.”

NRG will also be utilizing the multi-year technology transformation with Google Cloud. NRG will be able to better predict weather conditions, forecast wind and solar generation output, and create predictive pricing models through the use of Google Cloud's data, analytics, and AI technology.

"As we move toward a more sustainable future and face increasing energy demands, Google Cloud recognizes the importance of partnering with innovators like NRG and Renew Home to help transform the consumer energy experience with AI and the best of Google Cloud,” Michael Clark, president - North America at Google Cloud, adds. "Our collaboration will help Texas meet its growing energy demands, and also empower consumers to get more from their energy, smart home, and essential home services in the future.”

Texas reached an unprecedented demand surge of 85 gigawatts in 2023.

“As rapid population growth and weather events create new challenges for meeting demand in ERCOT, VPPs can deliver a reliable, flexible and dispatchable energy resource,” Renew Home CEO Ben Brown continues. “NRG’s commitment to creating a more resilient and sustainable energy future while also making electricity bills more affordable makes them an ideal partner for co-developing this unique VPP program. This initiative raises the bar for future-proofing our electricity infrastructure and delivering cost savings to customers.”

Dallas-based CBRE has acquired NRG's renewable advisory group. Photo via NRG.com

Houston-based NRG Energy exits renewables group to Texas real estate company

M&A Moves

NRG Energy, headquartered in Houston, has sold its renewable advisory group to Dallas-based commercial real estate services powerhouse CBRE. Financial terms weren’t disclosed.

The advisory group, led by Miro Sutton, brokers renewable energy deals, such as community- and utility-scale transactions, and advises clients on handling tax credits for renewable energy projects. The team works primarily with Fortune 500 companies.

Sutton joined CBRE as head of renewables and energy after overseeing the NRG advisory group. The group has arranged deals involving more than 5,000 megawatts of clean power.

“CBRE targeted this specific advisory team because of their unique approach to renewable procurement and expansive coverage of renewable offerings. They have enabled hundreds of projects and thousands of [megawatts] through their innovative contract structures that reduce risk and enhance economics for their customers,” Robert Bernard, CBRE’s chief sustainability officer, told Utility Dive.

In a news release, Bernard says market demand for renewable energy continues to grow rapidly as companies seek to meet their net-zero goals and other energy-related commitments.

“However, integrating renewable energy into a company’s real estate can be a complex process,” Bernard adds. “This acquisition enables CBRE to offer a wide range of energy-related sustainability services to all our clients, both occupiers and investors, and help them simplify the complexity associated with planning, sourcing and managing renewable energy.”

Here's how Direct Energy hopes to grow its renewable energy clientbase. Photo via Getty Images

Houston company incentivizes renewable energy plans

big perk

It pays to be a responsible energy consumer.

Direct Energy will be offering two-years of Amazon Prime for its new customers. The On Us promotion is part of an ongoing partnership with Amazon since 2018, and will include a fixed-rate electricity plan or a fixed-rate electricity plan with free nights or free weekends, and will be 100 percent renewable.

The On Us electricity suite will include free electricity between 9 p.m. and 9 a.m., free power from Friday night at 6 p.m. until midnight on Sunday, and a fixed rate for 24 months. Customers who already have Amazon Prime will receive a $15 gift card. The plan incentivizes new customers to join and receive the Prime membership, which is a $139 value.

“With this newest offer, Direct Energy makes it easy and seamless for customers to find the right electricity plan for their needs, with the added savings, convenience, and entertainment with Amazon Prime—all in a single membership,” Britany Keller, marketing lead at Direct Energy, says in a news release.

“Our customers can begin enjoying Prime membership as quickly as a day after they start service on an eligible plan with Direct Energy," she continues. "We are thrilled to continue to bring our customers new ways to enjoy Amazon Prime through our suite of ‘On Us’ plans.”

Direct Energy reports that it utilizes renewable energy from green sources like wind, geothermal, hydro, and solar energy to help reduce the carbon footprint.

Originally founded in Canada, Direct Energy is a subsidiary of Houston-based NRG Energy, which has recently announced its own sustainability advancements to NRG Park.

Companies like ExxonMobil, NRG, and Shell play an important role in helping the world transition to renewable energy sources. Photo via htxenergytransition.org

3 Houston companies leading the way towards a low-carbon future

the view from heti

As the world population makes a jump towards more than 9 billion people by 2050, the race to net-zero is more important than ever. An increase in population means an increase in the demand for energy. With everything from greenhouse gases, pollution, carbon and nitrogen deposition putting a strain on planet Earth, community and business leaders are making commitments to advance the energy transition.

Companies like ExxonMobil, NRG, and Shell play an important role in helping the world transition to renewable energy sources. Here are three ways that these energy companies are working towards an energy abundant, low-carbon future.

NRG Energy

Headquarted in Houston, NRG Energy is the leading integrated power company in the U.S. In 2022, NRG introduced a new Sustainability and Resiliency Impact Study as part of Harris County’s Climate Action Plan to reduce the city’s carbon emissions by 40% by 2030. The initiative includes $34 million in park upgrades and is expected to save $54 million.

That same year, Evolve Houston, a nonprofit working to accelerate electric vehicle adoption within the Greater Houston area, launched an e-mobility microgrant initiative funded by Evolve Corporate Catalysts, General Motors and bp. With five founding members, among them being NRG Energy and Shell, the goal of the initiative is to improve regional air quality and reduce greenhouse gas emissions in the Greater Houston area.

At the top of 2023, Reliant Energy and NRG launched the Simple Solar Sell Back electricity plan for Texans aimed at providing solar panels to local homes for lower electricity bills.

Shell

On a mission to improve their own operations, Shell is addressing energy efficiency over time and capturing or offsetting unavoidable greenhouse gas emissions. Headquartered in London. Shell is on a mission to become a net-zero emissions energy business by 2050. In 2022, the British multinational company invested $6 million to create the Prairie View A&M Shell Nature-Based Solutions Research Program, funded through the company’s Projects & Technology organization dedicated to funding research to develop new technology solutions.

In March of 2022, Shell gifted the University of Houston $10 million to bolster the institution’s efforts to establish the Energy Transition Institute which focuses on the production and use of reliable, affordable and cleaner energy for all. The company also launched the residential power brand Shell Energy offering 100% renewable electricity plans.

ExxonMobil

ExxonMobil is one of the world’s largest publicly traded international oil and gas companies. In 2021, the multinational oil and gas corporation pledged to invest more than $15 million in solutions to lower greenhouse gas emissions initiatives across six years. As a part of their approach to improve air quality, ExxonMobil is working to:

  • Understand the composition and extent of our emissions
  • Meet or exceed environmental regulations
  • Reduce air emissions to minimize potential impacts on local communities
  • Monitor the science and health standards related to air quality

Throughout the years, plastics have become an essential component of products, packaging, construction, transportation, electronics and more. While plastics are durable, lightweight and cheap, they also emit 3.4% of global greenhouse gas emissions. Late last year, the major corporation announced the successful startup of one of the largest advanced recycling facilities in North America. Located in Baytown, Texas, the recycling facility uses proprietary technology to break down raw materials for new products and is expected to have nearly 1 billion pounds of annual advanced recycling capacity by the end of 2026.

According to their 2023 Advancing Climate Action Progress Report released early this year, the corporation plans to reduce greenhouse gas emissions through 2030.

From resolving power grid issues to developing renewable energy technologies, Houston energy companies are powering today to empower the future.

------

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice research team's study keeps CO2-to-fuel devices running 50 times longer

new findings

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.

The case for smarter CUI inspections in the energy sector

Guest Column

Corrosion under insulation (CUI) accounts for roughly 60% of pipeline leaks in the U.S. oil and gas sector. Yet many operators still rely on outdated inspection methods that are slow, risky, and economically unsustainable.

This year, widespread budget cuts and layoffs across the sector are forcing refineries to do more with less. Efficiency is no longer a goal; it’s a mandate. The challenge: how to maintain safety and reliability without overextending resources?

Fortunately, a new generation of technologies is gaining traction in the oil and gas industry, offering operators faster, safer, and more cost-effective ways to identify and mitigate CUI.

Hidden cost of corrosion

Corrosion is a pervasive threat, with CUI posing the greatest risk to refinery operations. Insulation conceals damage until it becomes severe, making detection difficult and ultimately leading to failure. NACE International estimates the annual cost of corrosion in the U.S. at $276 billion.

Compounding the issue is aging infrastructure: roughly half of the nation’s 2.6 million miles of pipeline are over 50 years old. Aging infrastructure increases the urgency and the cost of inspections.

So, the question is: Are we at a breaking point or an inflection point? The answer depends largely on how quickly the industry can move beyond inspection methods that no longer match today's operational or economic realities.

Legacy methods such as insulation stripping, scaffolding, and manual NDT are slow, hazardous, and offer incomplete coverage. With maintenance budgets tightening, these methods are no longer viable.

Why traditional inspection falls short

Without question, what worked 50 years ago no longer works today. Traditional inspection methods are slow, siloed, and dangerously incomplete.

Insulation removal:

  • Disruptive and expensive.
  • Labor-intensive and time-consuming, with a high risk of process upsets and insulation damage.
  • Limited coverage. Often targets a small percentage of piping, leaving large areas unchecked.
  • Health risks: Exposes workers to hazardous materials such as asbestos or fiberglass.

Rope access and scaffolding:

  • Safety hazards. Falls from height remain a leading cause of injury.
  • Restricted time and access. Weather, fatigue, and complex layouts limit coverage and effectiveness.
  • High coordination costs. Multiple contractors, complex scheduling, and oversight, which require continuous monitoring, documentation, and compliance assurance across vendors and protocols drive up costs.

Spot checks:

  • Low detection probability. Random sampling often fails to detect localized corrosion.
  • Data gaps. Paper records and inconsistent methods hinder lifecycle asset planning.
  • Reactive, not proactive: Problems are often discovered late after damage has already occurred.

A smarter way forward

While traditional NDT methods for CUI like Pulsed Eddy Current (PEC) and Real-Time Radiography (RTR) remain valuable, the addition of robotic systems, sensors, and AI are transforming CUI inspection.

Robotic systems, sensors, and AI are reshaping how CUI inspections are conducted, reducing reliance on manual labor and enabling broader, data-rich asset visibility for better planning and decision-making.

ARIX Technologies, for example, introduced pipe-climbing robotic systems capable of full-coverage inspections of insulated pipes without the need for insulation removal. Venus, ARIX’s pipe-climbing robot, delivers full 360° CUI data across both vertical and horizontal pipe circuits — without magnets, scaffolding, or insulation removal. It captures high-resolution visuals and Pulsed Eddy Current (PEC) data simultaneously, allowing operators to review inspection video and analyze corrosion insights in one integrated workflow. This streamlines data collection, speeds up analysis, and keeps personnel out of hazardous zones — making inspections faster, safer, and far more actionable.

These integrated technology platforms are driving measurable gains:

  • Autonomous grid scanning: Delivers structured, repeatable coverage across pipe surfaces for greater inspection consistency.
  • Integrated inspection portal: Combines PEC, RTR, and video into a unified 3D visualization, streamlining analysis across inspection teams.
  • Actionable insights: Enables more confident planning and risk forecasting through digital, shareable data—not siloed or static.

Real-world results

Petromax Refining adopted ARIX’s robotic inspection systems to modernize its CUI inspections, and its results were substantial and measurable:

  • Inspection time dropped from nine months to 39 days.
  • Costs were cut by 63% compared to traditional methods.
  • Scaffolding was minimized 99%, reducing hazardous risks and labor demands.
  • Data accuracy improved, supporting more innovative maintenance planning.

Why the time is now

Energy operators face mounting pressure from all sides: aging infrastructure, constrained budgets, rising safety risks, and growing ESG expectations.

In the U.S., downstream operators are increasingly piloting drone and crawler solutions to automate inspection rounds in refineries, tank farms, and pipelines. Over 92% of oil and gas companies report that they are investing in AI or robotic technologies or have plans to invest soon to modernize operations.

The tools are here. The data is here. Smarter inspection is no longer aspirational — it’s operational. The case has been made. Petromax and others are showing what’s possible. Smarter inspection is no longer a leap but a step forward.

---

Tyler Flanagan is director of service & operations at Houston-based ARIX Technologies.


Scientists warn greenhouse gas accumulation is accelerating and more extreme weather will come

Climate Report

Humans are on track to release so much greenhouse gas in less than three years that a key threshold for limiting global warming will be nearly unavoidable, according to a study released June 19.

The report predicts that society will have emitted enough carbon dioxide by early 2028 that crossing an important long-term temperature boundary will be more likely than not. The scientists calculate that by that point there will be enough of the heat-trapping gas in the atmosphere to create a 50-50 chance or greater that the world will be locked in to 1.5 degrees Celsius (2.7 degrees Fahrenheit) of long-term warming since preindustrial times. That level of gas accumulation, which comes from the burning of fuels like gasoline, oil and coal, is sooner than the same group of 60 international scientists calculated in a study last year.

“Things aren’t just getting worse. They’re getting worse faster,” said study co-author Zeke Hausfather of the tech firm Stripe and the climate monitoring group Berkeley Earth. “We’re actively moving in the wrong direction in a critical period of time that we would need to meet our most ambitious climate goals. Some reports, there’s a silver lining. I don’t think there really is one in this one.”

That 1.5 goal, first set in the 2015 Paris agreement, has been a cornerstone of international efforts to curb worsening climate change. Scientists say crossing that limit would mean worse heat waves and droughts, bigger storms and sea-level rise that could imperil small island nations. Over the last 150 years, scientists have established a direct correlation between the release of certain levels of carbon dioxide, along with other greenhouse gases like methane, and specific increases in global temperatures.

In Thursday's Indicators of Global Climate Change report, researchers calculated that society can spew only 143 billion more tons (130 billion metric tons) of carbon dioxide before the 1.5 limit becomes technically inevitable. The world is producing 46 billion tons (42 billion metric tons) a year, so that inevitability should hit around February 2028 because the report is measured from the start of this year, the scientists wrote. The world now stands at about 1.24 degrees Celsius (2.23 degrees Fahrenheit) of long-term warming since preindustrial times, the report said.

Earth's energy imbalance

The report, which was published in the journal Earth System Science Data, shows that the rate of human-caused warming per decade has increased to nearly half a degree (0.27 degrees Celsius) per decade, Hausfather said. And the imbalance between the heat Earth absorbs from the sun and the amount it radiates out to space, a key climate change signal, is accelerating, the report said.

“It's quite a depressing picture unfortunately, where if you look across the indicators, we find that records are really being broken everywhere,” said lead author Piers Forster, director of the Priestley Centre for Climate Futures at the University of Leeds in England. “I can't conceive of a situation where we can really avoid passing 1.5 degrees of very long-term temperature change.”

The increase in emissions from fossil-fuel burning is the main driver. But reduced particle pollution, which includes soot and smog, is another factor because those particles had a cooling effect that masked even more warming from appearing, scientists said. Changes in clouds also factor in. That all shows up in Earth’s energy imbalance, which is now 25% higher than it was just a decade or so ago, Forster said.

Earth’s energy imbalance “is the most important measure of the amount of heat being trapped in the system,” Hausfather said.

Earth keeps absorbing more and more heat than it releases. “It is very clearly accelerating. It’s worrisome,” he said.

Crossing the temperature limit

The planet temporarily passed the key 1.5 limit last year. The world hit 1.52 degrees Celsius (2.74 degrees Fahrenheit) of warming since preindustrial times for an entire year in 2024, but the Paris threshold is meant to be measured over a longer period, usually considered 20 years. Still, the globe could reach that long-term threshold in the next few years even if individual years haven't consistently hit that mark, because of how the Earth's carbon cycle works.

That 1.5 is “a clear limit, a political limit for which countries have decided that beyond which the impact of climate change would be unacceptable to their societies,” said study co-author Joeri Rogelj, a climate scientist at Imperial College London.

The mark is so important because once it is crossed, many small island nations could eventually disappear because of sea level rise, and scientific evidence shows that the impacts become particularly extreme beyond that level, especially hurting poor and vulnerable populations, he said. He added that efforts to curb emissions and the impacts of climate change must continue even if the 1.5 degree threshold is exceeded.

Crossing the threshold "means increasingly more frequent and severe climate extremes of the type we are now seeing all too often in the U.S. and around the world — unprecedented heat waves, extreme hot drought, extreme rainfall events, and bigger storms,” said University of Michigan environment school dean Jonathan Overpeck, who wasn't part of the study.

Andrew Dessler, a Texas A&M University climate scientist who wasn't part of the study, said the 1.5 goal was aspirational and not realistic, so people shouldn’t focus on that particular threshold.

“Missing it does not mean the end of the world,” Dessler said in an email, though he agreed that “each tenth of a degree of warming will bring increasingly worse impacts.”