the view from heti

3 Houston companies leading the way towards a low-carbon future

Companies like ExxonMobil, NRG, and Shell play an important role in helping the world transition to renewable energy sources. Photo via htxenergytransition.org

As the world population makes a jump towards more than 9 billion people by 2050, the race to net-zero is more important than ever. An increase in population means an increase in the demand for energy. With everything from greenhouse gases, pollution, carbon and nitrogen deposition putting a strain on planet Earth, community and business leaders are making commitments to advance the energy transition.

Companies like ExxonMobil, NRG, and Shell play an important role in helping the world transition to renewable energy sources. Here are three ways that these energy companies are working towards an energy abundant, low-carbon future.

NRG Energy

Headquarted in Houston, NRG Energy is the leading integrated power company in the U.S. In 2022, NRG introduced a new Sustainability and Resiliency Impact Study as part of Harris County’s Climate Action Plan to reduce the city’s carbon emissions by 40% by 2030. The initiative includes $34 million in park upgrades and is expected to save $54 million.

That same year, Evolve Houston, a nonprofit working to accelerate electric vehicle adoption within the Greater Houston area, launched an e-mobility microgrant initiative funded by Evolve Corporate Catalysts, General Motors and bp. With five founding members, among them being NRG Energy and Shell, the goal of the initiative is to improve regional air quality and reduce greenhouse gas emissions in the Greater Houston area.

At the top of 2023, Reliant Energy and NRG launched the Simple Solar Sell Back electricity plan for Texans aimed at providing solar panels to local homes for lower electricity bills.

Shell

On a mission to improve their own operations, Shell is addressing energy efficiency over time and capturing or offsetting unavoidable greenhouse gas emissions. Headquartered in London. Shell is on a mission to become a net-zero emissions energy business by 2050. In 2022, the British multinational company invested $6 million to create the Prairie View A&M Shell Nature-Based Solutions Research Program, funded through the company’s Projects & Technology organization dedicated to funding research to develop new technology solutions.

In March of 2022, Shell gifted the University of Houston $10 million to bolster the institution’s efforts to establish the Energy Transition Institute which focuses on the production and use of reliable, affordable and cleaner energy for all. The company also launched the residential power brand Shell Energy offering 100% renewable electricity plans.

ExxonMobil

ExxonMobil is one of the world’s largest publicly traded international oil and gas companies. In 2021, the multinational oil and gas corporation pledged to invest more than $15 million in solutions to lower greenhouse gas emissions initiatives across six years. As a part of their approach to improve air quality, ExxonMobil is working to:

  • Understand the composition and extent of our emissions
  • Meet or exceed environmental regulations
  • Reduce air emissions to minimize potential impacts on local communities
  • Monitor the science and health standards related to air quality

Throughout the years, plastics have become an essential component of products, packaging, construction, transportation, electronics and more. While plastics are durable, lightweight and cheap, they also emit 3.4% of global greenhouse gas emissions. Late last year, the major corporation announced the successful startup of one of the largest advanced recycling facilities in North America. Located in Baytown, Texas, the recycling facility uses proprietary technology to break down raw materials for new products and is expected to have nearly 1 billion pounds of annual advanced recycling capacity by the end of 2026.

According to their 2023 Advancing Climate Action Progress Report released early this year, the corporation plans to reduce greenhouse gas emissions through 2030.

From resolving power grid issues to developing renewable energy technologies, Houston energy companies are powering today to empower the future.

------

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Trending News

A View From HETI

No critical minerals, no modern economy. Getty images

If you’re reading this on a phone, driving an EV, flying in a plane, or relying on the power grid to keep your lights on, you’re benefiting from critical minerals. These are the building blocks of modern life. Things like copper, lithium, nickel, rare earth elements, and titanium, they’re found in everything from smartphones to solar panels to F-35 fighter jets.

In short: no critical minerals, no modern economy.

These minerals aren’t just useful, they’re essential. And in the U.S., we don’t produce enough of them. Worse, we’re heavily dependent on countries that don’t always have our best interests at heart. That’s a serious vulnerability, and we’ve done far too little to fix it.

Where We Use Them and Why We’re Behind

Let’s start with where these minerals show up in daily American life:

  • Electric vehicles need lithium, cobalt, and nickel for batteries.
  • Wind turbines and solar panels rely on rare earths and specialty metals.
  • Defense systems require titanium, beryllium, and rare earths.
  • Basic infrastructure like power lines and buildings depend on copper and aluminum.

You’d think that something so central to the economy, and to national security, would be treated as a top priority. But we’ve let production and processing capabilities fall behind at home, and now we’re playing catch-up.

The Reality Check: We’re Not in Control

Right now, the U.S. is deeply reliant on foreign sources for critical minerals, especially China. And it’s not just about mining. China dominates processing and refining too, which means they control critical links in the supply chain.

Gabriel Collins and Michelle Michot Foss from the Baker Institute lay all this out in a recent report that every policymaker should read. Their argument is blunt: if we don’t get a handle on this, we’re in trouble, both economically and militarily.

China has already imposed export controls on key rare earth elements like dysprosium and terbium which are critical for magnets, batteries, and defense technologies, in direct response to new U.S. tariffs. This kind of tit-for-tat escalation exposes just how much leverage we’ve handed over. If this continues, American manufacturers could face serious material shortages, higher costs, and stalled projects.

We’ve seen this movie before, in the pandemic, when supply chains broke and countries scrambled for basics like PPE and semiconductors. We should’ve learned our lesson.

We Do Have a Stockpile, But We Need a Strategy

Unlike during the Cold War, the U.S. no longer maintains comprehensive strategic reserves across the board, but we do have stockpiles managed by the Defense Logistics Agency. The real issue isn’t absence, it’s strategy: what to stockpile, how much, and under what assumptions.

Collins and Michot Foss argue for a more robust and better-targeted approach. That could mean aiming for 12 to 18 months worth of demand for both civilian and defense applications. Achieving that will require:

  • Smarter government purchasing and long-term contracts
  • Strategic deals with allies (e.g., swapping titanium for artillery shells with Ukraine)
  • Financing mechanisms to help companies hold critical inventory for emergency use

It’s not cheap, but it’s cheaper than scrambling mid-crisis when supplies are suddenly cut off.

The Case for Advanced Materials: Substitutes That Work Today

One powerful but often overlooked solution is advanced materials, which can reduce our dependence on vulnerable mineral supply chains altogether.

Take carbon nanotube (CNT) fibers, a cutting-edge material invented at Rice University. CNTs are lighter, stronger, and more conductive than copper. And unlike some future tech, this isn’t hypothetical: we could substitute CNTs for copper wire harnesses in electrical systems today.

As Michot Foss explained on the Energy Forum podcast:

“You can substitute copper and steel and aluminum with carbon nanotube fibers and help offset some of those trade-offs and get performance enhancements as well… If you take carbon nanotube fibers and you put those into a wire harness… you're going to be reducing the weight of that wire harness versus a metal wire harness like we already use. And you're going to be getting the same benefit in terms of electrical conductivity, but more strength to allow the vehicle, the application, the aircraft, to perform better.”

By accelerating R&D and deployment of CNTs and similar substitutes, we can reduce pressure on strained mineral supply chains, lower emissions, and open the door to more secure and sustainable manufacturing.

We Have Tools. We Need to Use Them.

The report offers a long list of solutions. Some are familiar, like tax incentives, public-private partnerships, and fast-tracked permits. Others draw on historical precedent, like “preclusive purchasing,” a WWII tactic where the U.S. bought up materials just so enemies couldn’t.

We also need to get creative:

  • Repurpose existing industrial sites into mineral hubs
  • Speed up R&D for substitutes and recycling
  • Buy out risky foreign-owned assets in friendlier countries

Permitting remains one of the biggest hurdles. In the U.S., it can take 7 to 10 years to approve a new critical minerals project, a timeline that doesn’t match the urgency of our strategic needs. As Collins said on the Energy Forum podcast:

“Time kills deals... That’s why it’s more attractive generally to do these projects elsewhere.”

That’s the reality we’re up against. Long approval windows discourage investment and drive developers to friendlier jurisdictions abroad. One encouraging step is the use of the Defense Production Act to fast-track permitting under national security grounds. That kind of shift, treating permitting as a strategic imperative, must become the norm, not the exception.

It’s Time to Redefine Sustainability

Sustainability has traditionally focused on cutting carbon emissions. That’s still crucial, but we need a broader definition. Today, energy and materials security are just as important.

Countries are now weighing cost and reliability alongside emissions goals. We're also seeing renewed attention to recycling, biodiversity, and supply chain resilience.

Net-zero by 2050 is still a target. But reality is forcing a more nuanced discussion:

  • What level of warming is politically and economically sustainable?
  • What tradeoffs are we willing to make to ensure energy access and affordability?

The bottom line: we can’t build a clean energy future without secure access to materials. Recycling helps, but it’s not enough. We'll need new mines, new tech, and a more flexible definition of sustainability.

My Take: We’re Running Out of Time

This isn’t just a policy debate. It’s a test of whether we’ve learned anything from the past few years of disruption. We’re not facing an open war, but the risks are real and growing.

We need to treat critical minerals like what they are: a strategic necessity. That means rebuilding stockpiles, reshoring processing, tightening alliances, and accelerating permitting across the board.

It won’t be easy. But if we wait until a real crisis hits, it’ll be too late.

———

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn on April 11, 2025.


Trending News