Researchers from the University of Houston believe that aligning state recycling policies could create a circular plastics economy. Photo courtesy UH.

The latest white paper from the University of Houston’s Energy Transition Institute analyzes how the U.S. currently handles plastics recycling and advocates for a national, policy-driven approach.

Ramanan Krishnamoorti, vice president for energy and innovation at UH; Debalina Sengupta, assistant vice president and chief operating officer at the Energy Transition Institute; and UH researcher Aparajita Datta authored the paper titled “Extended Producer Responsibility (EPR) for Plastics Packaging: Gaps, Challenges and Opportunities for Policies in the United States.” In the paper, the scientists argue that the current mix of state laws and limited recycling infrastructure are holding back progress at the national level.

EPR policies assign responsibility for the end-of-life management of plastic packaging to producers or companies, instead of taxpayers, to incentivize better product design and reduce waste.

“My hope is this research will inform government agencies on what policies could be implemented that would improve how we approach repurposing plastics in the U.S.,” Krishnamoorti said in a news release. “Not only will this information identify policies that help reduce waste, but they could also prove to be a boon to the circular economy as they can identify economically beneficial pathways to recycle materials.”

The paper notes outdated recycling infrastructure and older technology as roadblocks.

Currently, only seven states have passed EPR laws for plastic packaging. Ten others are looking to pass similar measures, but each looks different, according to UH. Additionally, each state also has its own reporting system, which leads to incompatible datasets. Developing national EPR policies or consistent nationwide standards could lead to cleaner and more efficient processes, the report says.

The researchers also believe that investing in sorting, processing facilities, workforce training and artificial intelligence could alleviate issues for businesses—and particularly small businesses, which often lack the resources to manage complex reporting systems. Digital infrastructure techniques and moving away from manual data collection could also help.

Public education on recycling would also be “imperative” to the success of new policies, the report adds.

“Experts repeatedly underscored that public education and awareness about EPR, including among policymakers, are dismal,” the report reads. “Infrastructural limitations, barriers to access and the prevailing belief that curbside recycling is ineffective in the U.S. contribute to public dissatisfaction, misinformation and, in some cases, opposition toward the use of taxpayers’ and ratepayers’ contributions for EPR.”

For more information, read the full paper here.

UH's new Energy in Action Seminar Series kicked off this month. Photo via UH.edu

UH launches new series on AI’s impact on the energy sector

where to be

The University of Houston's Energy Transition Institute has launched a new Energy in Action Seminar Series that will feature talks focused on the intersection of the energy industry and digitization trends, such as AI.

The first event in the series took place earlier this month, featuring Raiford Smith, global market lead for power & energy for Google Cloud, who presented "AI, Energy, and Data Centers." The talk discussed the benefits of widespread AI adoption for growth in traditional and low-carbon energy resources.

Future events include:

“Through this timely and informative seminar series, ETI will bring together energy professionals, researchers, students, and anyone working in or around digital innovation in energy," Debalina Sengupta, chief operating officer of ETI, said in a news release. "We encourage industry members and students to register now and reap the benefits of participating in both the seminar and the reception, which presents a fantastic opportunity to stay ahead of industry developments and build a strong network in the Greater Houston energy ecosystem.”

The series is slated to continue throughout 2026. Each presentation is followed by a one-hour networking reception. Register for the next event here.

"Driving the Energy Transition” will air on Houston Public Media’s KUHF News 88.7 every other Monday. Photo courtesy of UH

University of Houston launches web, radio series to address key energy transition topics

tune in

The University of Houston Energy Transition Institute — in its mission to address challenges in the energy field and the ongoing energy transition — is launching two educational series via radio program and web seminars.

“Both these programs are ways for us to reach and share information with our stakeholders in the Houston ecosystem, region, nation and world about the latest trends in research and policy related to the energy transition,” Debalina Sengupta, chief operating officer at ETI, says in a news release.

"Driving the Energy Transition” will air on Houston Public Media’s KUHF News 88.7, and new episodes will be available every other Monday. The Energy Transition Webinar series will run biweekly on Tuesdays and offer online discussions that will feature UH experts and other experts in the field.

The radio series plans to explore innovations, policies and technologies around shifting the world to lower-carbon resources. The webinar series promises a “deep dive” into topics like the hydrogen economy, carbon capture, the circular economy, and sustainable energy practices, according to a news release. The webinars will include strategies for the energy landscape from Texas to globally, from UH faculty, students, industry leaders, and energy pioneers.

“UH is The Energy University, and 'Energy Transition' is the topic that should be on everyone’s mind right now,” ETI founding executive director Joe Powell adds. “How do we meet the dual challenge of expanding supply for equitable global access to energy, while also reducing fossil carbon dioxide emissions to address climate change? How do we continue to produce but also recycle the high-performance hydrocarbon products, which underpin our quality of life?”

The ETI focuses on hydrogen, carbon management, and circular plastics, and was founded in 2022 with a $10 million commitment from Shell. The institute also received a $100,000 grant from Baker Hughes in 2023.The institute also works closely with UH’s Hewlett Packard Enterprise Data Science Institute and researchers across the University, and with other colleges, universities and industry partners. The ETI has helped catalyze “cross-disciplinary cooperation” to expand funding opportunities for UH faculty, which includes direct funding of over 24 projects via seed grants.

“Our aim is to provide reliable scientific evidence-based knowledge for all, to enable them to make informed decisions for the future of energy,” Sengupta says.

The University of Houston has joined the Energy Storage Research Alliance, one of two DOE-backed energy innovation hubs. Photo via Getty Images

University of Houston selected for DOE-backed energy storage innovation initiative

tapping in

The University of Houston was selected for a new energy storage initiative from the United States Department of Energy.

UH is part of the Energy Storage Research Alliance (ESRA), which is one of the two energy innovation hubs that the DOE is creating with $125 million. The DOE will provide up to $62.5 million in ESRA funding over a span of five years.

“To fuel innovation and cultivate a sustainable and equitable energy future, all universities, government entities, industry and community partners have to work together,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, says in a news release. “No one person or entity can achieve all this by themselves. As the Energy University and a Carnegie-designated Tier One research university, located in Houston — a center of diverse talent and experience from across the energy industry — UH has a unique advantage of continuing to build on Houston’s global leadership and demonstrating solutions at scale.

The hubs will attempt to address battery challenges and encourage next-generation innovation, which include safety, high-energy density and long-duration batteries. The batteries will be made from inexpensive, abundant materials, per the release.

The work that will be done at ESRA and other hubs can optimize renewable energy usage, reduce emissions, enhance grid reliability, and assist in growing electric transportation, and other clean energy solutions.

ESRA will bring in 50 researchers from three national laboratories and 12 other universities, including UH. The deputy lead of the soft matter scientific thrust and the principal investigator for UH’s portion of the project will be Yan Yao. Yao is the Hugh Roy and Lillie Cranz Cullen Distinguished Professor at the UH Cullen College of Engineering and principal investigator at the Texas Center for Superconductivity.

UH professor Yan Yao will lead the school's participation in the program. Photo via UH.edu

ESRA will focus on three interconnected scientific thrusts and how they work together: liquids, soft matter, and condensed matter phases. Yao and his team have created next-generation batteries using low-cost organic materials. The team previously used quinones that can be synthesized from plants and food like soybeans to increase energy density, electrochemical stability and safety in the cathode. Yao’s team were the first to make solid-state sodium batteries by using multi-electron conformal organic cathodes. The cathodes had a demonstrated record of recharging stability of 500 charging cycles.

Robert A. Welch Assistant Professor of electrical and computer engineering at UH Pieremanuele Canepa, will serve as co-PI. Both will investigate phase transitions in multi-electron redox materials and conformable cathodes to enable solid-state batteries by “marrying Yao’s experimental lab work with Canepa’s expertise in computational material science,” according to the release.

Joe Powell, founding director of the UH Energy Transition Institute and a professor in the Department of Chemical and Biomolecular Engineering, will create a community benefit plan and develop an energy equity course.

“New energy infrastructure and systems can have benefits and burdens for communities,” Powell says in the release. “Understanding potential issues and partnering to develop best solutions is critical. We want everyone to be able to participate in the new energy economy and benefit from clean energy solutions.”

This project will be led by Argonne National Laboratory and co-led by Lawrence Berkeley National Laboratory and Pacific Northwest National Laboratory.

“This is a once in a lifetime opportunity,” adds Yao. “To collaborate with world-class experts to understand and develop new science and make discoveries that will lead to the next generation of batteries and energy storage concepts, and potentially game changing devices is exciting. It’s also a great opportunity for our students to learn from and work with top scientists in the country and be part of cutting-edge research.”

Debalina Sengupta has been named as the chief operating officer of UH's Energy Transition Institute. Photo via UH.edu

University of Houston names new energy transition-focused executive

leading the way

The University of Houston has named a new C-level executive to its energy transition-focused initiative.

Debalina Sengupta has been named as the chief operating officer of UH's Energy Transition Institute, which was established in 2022 by a $10 million commitment from Shell USA Inc. and Shell Global Solutions (US) Inc. The institute focuses on hydrogen, carbon management and circular plastics and works closely with UH’s Hewlett Packard Enterprise Data Science Institute and researchers across the university.

Sengupta, who was previously a chemical engineer with over 18 years of experience with sustainability and resilience issues, was called to ETI’s mission and its focus on Houston, which is home to more than 4,500 energy companies and a pivotal international oil and gas hub.

“UH Energy Transition Institute is the first of its kind Institute setup in Texas that focuses solely on the transition of energy,” she says in a news release. “A two-way communication between the academic community and various stakeholders is necessary to implement the transition and I saw the UH ETI role enabling me to achieve this critical goal.”

Originally from India, where she saw first-hand the impact of natural disasters, she has been working with Texas coastal communities over the past two years to not help bring coastal resilience projects along the coast. The Texas coast will serve potentially as an economic development zone for several energy transition projects.

“It is necessary that we think deeply about sustainability quantification for our energy systems, diversify and expand from fossil to non-fossil resources, and understand how it can impact our future generations,” Sengupta continues. “This requires rigorous training and adopting new technologies that will enable the change, and I am dedicated to work towards this goal for UH ETI.”

Sengupta has also worked as a postdoctoral research fellow in the U.S. Environmental Protection Agency. She has a bachelor’s degree in chemical engineering from Jadavpur University in India and a doctorate from Louisiana State University with a focus on process systems engineering. Sengupta previously was at Texas A&M University where she was the Coastal Resilience Program director for Texas Sea Grant,which is a federal-state partnership program funded by the U.S. Department of Commerce National Oceanic and Atmospheric Administration. She has served as the associate director of the Texas A&M Engineering Experiment Station’s Gas and Fuels Research Center; coordinator of the Water, Energy and Food Nexus at Texas A&M Energy Institute; and lecturer at the Artie McFerrin Department of Chemical Engineering.

The ETI has helped catalyze “cross-disciplinary cooperation” to expand funding opportunities for UH faculty, which includes direct funding of over 24 projects via seed grants. As the new COO, Sengupta will work alongside founding executive director of the institute, Joe Powell, their executive team and the ETI advisory board to develop and implement strategic plans. Her position is partially funded by a $500,000 grant from the Houston-based Cullen Foundation.

“We are excited to have Dr. Sengupta join us at UH to help drive the Energy Transition Institute to fulfill its mission in educating students, expanding top-tier research, and providing thought leadership in sustainable energy and chemicals for the Houston area and beyond,” Powell adds. “Dr. Sengupta brings a strong background and network in collaborating with academic, community, governmental and industry partners to build the coalitions needed for success.”

These appointments are part of a memorandum of understanding that Argonne, located in the Chicago area, recently signed with the Greater Houston Partnership. Photo via UH.edu

3 top DOE researchers take professor positions at University of Houston

new hires

Three top researchers at the U.S. Department of Energy’s Argonne National Laboratory have accepted joint appointments at the University of Houston.

“This strategic collaboration leverages the combined strengths of Argonne and the [university] to further critical research efforts, public-private partnerships, and educational opportunities for students in the energy transition and lead to transformational advancement of commercial scale energy industries,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, says in a news release.

These appointments are part of a memorandum of understanding that Argonne, located in the Chicago area, recently signed with the Greater Houston Partnership. The agreement seeks to accelerate decarbonization efforts in the Houston area.

The three scientists appointed to positions are UH are:

  • Zach Hood, whose appointment is in the Department of Electrical and Computer Engineering at the UH Cullen College of Engineering. He’ll be hosted by Yan Yao, a UH professor who is principal investigator at the Texas Center for Superconductivity.
  • Jianlin Li, whose appointment also is in the Department of Electrical and Computer Engineering. He plans to establish a dry room facility at UH and conduct research on energy storage technologies, electrode processing, and cell manufacturing.
  • Michael Wang, the inaugural Distinguished Senior Scholar at UH’s Energy Transition Institute. His objectives include advancing research in decarbonizing the oil and gas sector through carbon management and transitioning to renewable energy sources. Wang will conduct seminars and present lectures in environmental sustainability, lifecycle, and techno-economic analysis of energy technologies, while helping Argonne tap into the university’s talent pool.

“With more than 30 years of experience, Dr. Wang brings critical tools and expertise to the UH Energy Transition Institute, which is dedicated to unlocking the transformative potential within three critical domains: hydrogen, carbon management, and circular plastics,” says Joe Powell, founding executive director of the Energy Transition Institute. “These areas not only present opportunities for reshaping the energy sector but also stand as pillars for societal sustainable development and decarbonization.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based ENGIE to add new wind and solar projects to Texas grid

coming soon

Houston-based ENGIE North America Inc. has expanded its partnership with Los Angeles-based Ares Infrastructure Opportunities to add 730 megawatts of renewable energy projects to the ERCOT grid.

The new projects will include one wind and two solar projects in Texas.

“The continued growth of our relationship with Ares reflects the strength of ENGIE’s portfolio of assets and our track record of delivering, operating and financing growth in the U.S. despite challenging circumstances,” Dave Carroll, CEO and Chief Renewables Officer of ENGIE North America, said in a news release. “The addition of another 730 MW of generation to our existing relationship reflects the commitment both ENGIE and Ares have to meeting growing demand for power in the U.S. and our willingness to invest in meeting those needs.”

ENGIE has more than 11 gigawatts of renewable energy projects in operation or under construction in the U.S. and Canada, and 52.7 gigawatts worldwide. The company is targeting 95 gigawatts by 2030.

ENGIE launched three new community solar farms in Illinois since December, including the 2.5-megawatt Harmony community solar farm in Lena and the Knox 2A and Knox 2B projects in Galesburg.

The company's 600-megawatt Swenson Ranch Solar project near Abilene, Texas, is expected to go online in 2027 and will provide power for Meta, the parent company of social media platform Facebook. Late last year, ENGIE also signed a nine-year renewable energy supply agreement with AstraZeneca to support the pharmaceutical company’s manufacturing operations from its 114-megawatt Tyson Nick Solar Project in Lamar County, Texas.

Houston geothermal company raises $97M Series B

fresh funding

Houston-based geothermal energy startup Sage Geosystems has closed its Series B fundraising round and plans to use the money to launch its first commercial next-generation geothermal power generation facility.

Ormat Technologies and Carbon Direct Capital co-led the $97 million round, according to a press release from Sage. Existing investors Exa, Nabors, alfa8, Arch Meredith, Abilene Partners, Cubit Capital and Ignis H2 Energy also participated, as well as new investors SiteGround Capital and The UC Berkeley Foundation’s Climate Solutions Fund.

The new geothermal power generation facility will be located at one of Ormat Technologies' existing power plants. The Nevada-based company has geothermal power projects in the U.S. and numerous other countries around the world. The facility will use Sage’s proprietary pressure geothermal technology, which extracts geothermal heat energy from hot dry rock, an abundant geothermal resource.

“Pressure geothermal is designed to be commercial, scalable and deployable almost anywhere,” Cindy Taff, CEO of Sage Geosystems, said in the news release. “This Series B allows us to prove that at commercial scale, reflecting strong conviction from partners who understand both the urgency of energy demand and the criticality of firm power.”

Sage reports that partnering with the Ormat facility will allow it to market and scale up its pressure geothermal technology at a faster rate.

“This investment builds on the strong foundation we’ve established through our commercial agreement and reinforces Ormat’s commitment to accelerating geothermal development,” Doron Blachar, CEO of Ormat Technologies, added in the release. “Sage’s technical expertise and innovative approach are well aligned with Ormat’s strategy to move faster from concept to commercialization. We’re pleased to take this natural next step in a partnership we believe strongly in.”

In 2024, Sage agreed to deliver up to 150 megawatts of new geothermal baseload power to Meta, the parent company of Facebook. At the time, the companies reported that the project's first phase would aim to be operating in 2027.

The company also raised a $17 million Series A, led by Chesapeake Energy Corp., in 2024.

Houston expert discusses the clean energy founder's paradox

Guest Column

Everyone tells you to move fast and break things. In clean energy, moving fast without structural integrity means breaking the only planet we’ve got. This is the founder's paradox: you are building a company in an industry where the stakes are existential, the timelines are glacial, and the capital requires patience.

The myth of the lone genius in a garage doesn’t really apply here. Clean energy startups aren’t just fighting competitors. They are fighting physics, policy, and decades of existing infrastructure. This isn’t an app. You’re building something physical that has to work in the real world. It has to be cheaper, more reliable, and clearly better than fossil fuels. Being “green” alone isn’t enough. Scale is what matters.

Your biggest risks aren’t competitors. They’re interconnection delays, permitting timelines, supply chain fragility, and whether your first customer is willing to underwrite something that hasn’t been done before.

That reality creates a brutal filter. Successful founders in this space need deep technical knowledge and the ability to execute. You need to understand engineering, navigate regulation, and think in terms of markets and risk. You’re not just selling a product. You’re selling a future where your solution becomes the obvious choice. That means connecting short-term financial returns with long-term system change.

The capital is there, but it’s smarter and more demanding. Investors today have PhDs in electrochemistry and grid dynamics. They’ve been burned by promises of miracle materials that never left the lab. They don't fund visions; they fund pathways to impact that can scale and make financial sense. Your roadmap must show not just a brilliant invention, but a clear, believable plan to drive costs down over time.

Capital in this sector isn’t impressed by ambition alone. It wants evidence that risk is being retired in the right order — even if that means slower growth early.

Here’s the upside. The difficulty of clean energy is also its strength. If you succeed, your advantage isn’t just in software or branding. It’s in hardware, supply chains, approvals, and years of hard work that others can’t easily copy. Your real competitors aren’t other startups. They’re inertia and the existing system. Winning here isn’t zero-sum. When one solution scales, it helps the entire market grow.

So, to the founder in the lab, or running field tests at a remote site: your pace will feel slow. The validation cycles are long. But you are building in the physical world. When you succeed, you don’t have an exit. You have a foundation. You don't just have customers; you have converts. And the product you ship doesn't just generate revenue; it creates a legacy.

If your timelines feel uncomfortable compared to software, that’s because you’re operating inside a system designed to resist change. And let’s not forget you are building actual physical products that interact with a complex world. Times are tough. Don’t give up. We need you.

---

Nada Ahmed is the founding partner at Houston-based Energy Tech Nexus.