"Driving the Energy Transition” will air on Houston Public Media’s KUHF News 88.7 every other Monday. Photo courtesy of UH

The University of Houston Energy Transition Institute — in its mission to address challenges in the energy field and the ongoing energy transition — is launching two educational series via radio program and web seminars.

“Both these programs are ways for us to reach and share information with our stakeholders in the Houston ecosystem, region, nation and world about the latest trends in research and policy related to the energy transition,” Debalina Sengupta, chief operating officer at ETI, says in a news release.

"Driving the Energy Transition” will air on Houston Public Media’s KUHF News 88.7, and new episodes will be available every other Monday. The Energy Transition Webinar series will run biweekly on Tuesdays and offer online discussions that will feature UH experts and other experts in the field.

The radio series plans to explore innovations, policies and technologies around shifting the world to lower-carbon resources. The webinar series promises a “deep dive” into topics like the hydrogen economy, carbon capture, the circular economy, and sustainable energy practices, according to a news release. The webinars will include strategies for the energy landscape from Texas to globally, from UH faculty, students, industry leaders, and energy pioneers.

“UH is The Energy University, and 'Energy Transition' is the topic that should be on everyone’s mind right now,” ETI founding executive director Joe Powell adds. “How do we meet the dual challenge of expanding supply for equitable global access to energy, while also reducing fossil carbon dioxide emissions to address climate change? How do we continue to produce but also recycle the high-performance hydrocarbon products, which underpin our quality of life?”

The ETI focuses on hydrogen, carbon management, and circular plastics, and was founded in 2022 with a $10 million commitment from Shell. The institute also received a $100,000 grant from Baker Hughes in 2023.The institute also works closely with UH’s Hewlett Packard Enterprise Data Science Institute and researchers across the University, and with other colleges, universities and industry partners. The ETI has helped catalyze “cross-disciplinary cooperation” to expand funding opportunities for UH faculty, which includes direct funding of over 24 projects via seed grants.

“Our aim is to provide reliable scientific evidence-based knowledge for all, to enable them to make informed decisions for the future of energy,” Sengupta says.

The University of Houston has joined the Energy Storage Research Alliance, one of two DOE-backed energy innovation hubs. Photo via Getty Images

University of Houston selected for DOE-backed energy storage innovation initiative

tapping in

The University of Houston was selected for a new energy storage initiative from the United States Department of Energy.

UH is part of the Energy Storage Research Alliance (ESRA), which is one of the two energy innovation hubs that the DOE is creating with $125 million. The DOE will provide up to $62.5 million in ESRA funding over a span of five years.

“To fuel innovation and cultivate a sustainable and equitable energy future, all universities, government entities, industry and community partners have to work together,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, says in a news release. “No one person or entity can achieve all this by themselves. As the Energy University and a Carnegie-designated Tier One research university, located in Houston — a center of diverse talent and experience from across the energy industry — UH has a unique advantage of continuing to build on Houston’s global leadership and demonstrating solutions at scale.

The hubs will attempt to address battery challenges and encourage next-generation innovation, which include safety, high-energy density and long-duration batteries. The batteries will be made from inexpensive, abundant materials, per the release.

The work that will be done at ESRA and other hubs can optimize renewable energy usage, reduce emissions, enhance grid reliability, and assist in growing electric transportation, and other clean energy solutions.

ESRA will bring in 50 researchers from three national laboratories and 12 other universities, including UH. The deputy lead of the soft matter scientific thrust and the principal investigator for UH’s portion of the project will be Yan Yao. Yao is the Hugh Roy and Lillie Cranz Cullen Distinguished Professor at the UH Cullen College of Engineering and principal investigator at the Texas Center for Superconductivity.

UH professor Yan Yao will lead the school's participation in the program. Photo via UH.edu

ESRA will focus on three interconnected scientific thrusts and how they work together: liquids, soft matter, and condensed matter phases. Yao and his team have created next-generation batteries using low-cost organic materials. The team previously used quinones that can be synthesized from plants and food like soybeans to increase energy density, electrochemical stability and safety in the cathode. Yao’s team were the first to make solid-state sodium batteries by using multi-electron conformal organic cathodes. The cathodes had a demonstrated record of recharging stability of 500 charging cycles.

Robert A. Welch Assistant Professor of electrical and computer engineering at UH Pieremanuele Canepa, will serve as co-PI. Both will investigate phase transitions in multi-electron redox materials and conformable cathodes to enable solid-state batteries by “marrying Yao’s experimental lab work with Canepa’s expertise in computational material science,” according to the release.

Joe Powell, founding director of the UH Energy Transition Institute and a professor in the Department of Chemical and Biomolecular Engineering, will create a community benefit plan and develop an energy equity course.

“New energy infrastructure and systems can have benefits and burdens for communities,” Powell says in the release. “Understanding potential issues and partnering to develop best solutions is critical. We want everyone to be able to participate in the new energy economy and benefit from clean energy solutions.”

This project will be led by Argonne National Laboratory and co-led by Lawrence Berkeley National Laboratory and Pacific Northwest National Laboratory.

“This is a once in a lifetime opportunity,” adds Yao. “To collaborate with world-class experts to understand and develop new science and make discoveries that will lead to the next generation of batteries and energy storage concepts, and potentially game changing devices is exciting. It’s also a great opportunity for our students to learn from and work with top scientists in the country and be part of cutting-edge research.”

Debalina Sengupta has been named as the chief operating officer of UH's Energy Transition Institute. Photo via UH.edu

University of Houston names new energy transition-focused executive

leading the way

The University of Houston has named a new C-level executive to its energy transition-focused initiative.

Debalina Sengupta has been named as the chief operating officer of UH's Energy Transition Institute, which was established in 2022 by a $10 million commitment from Shell USA Inc. and Shell Global Solutions (US) Inc. The institute focuses on hydrogen, carbon management and circular plastics and works closely with UH’s Hewlett Packard Enterprise Data Science Institute and researchers across the university.

Sengupta, who was previously a chemical engineer with over 18 years of experience with sustainability and resilience issues, was called to ETI’s mission and its focus on Houston, which is home to more than 4,500 energy companies and a pivotal international oil and gas hub.

“UH Energy Transition Institute is the first of its kind Institute setup in Texas that focuses solely on the transition of energy,” she says in a news release. “A two-way communication between the academic community and various stakeholders is necessary to implement the transition and I saw the UH ETI role enabling me to achieve this critical goal.”

Originally from India, where she saw first-hand the impact of natural disasters, she has been working with Texas coastal communities over the past two years to not help bring coastal resilience projects along the coast. The Texas coast will serve potentially as an economic development zone for several energy transition projects.

“It is necessary that we think deeply about sustainability quantification for our energy systems, diversify and expand from fossil to non-fossil resources, and understand how it can impact our future generations,” Sengupta continues. “This requires rigorous training and adopting new technologies that will enable the change, and I am dedicated to work towards this goal for UH ETI.”

Sengupta has also worked as a postdoctoral research fellow in the U.S. Environmental Protection Agency. She has a bachelor’s degree in chemical engineering from Jadavpur University in India and a doctorate from Louisiana State University with a focus on process systems engineering. Sengupta previously was at Texas A&M University where she was the Coastal Resilience Program director for Texas Sea Grant,which is a federal-state partnership program funded by the U.S. Department of Commerce National Oceanic and Atmospheric Administration. She has served as the associate director of the Texas A&M Engineering Experiment Station’s Gas and Fuels Research Center; coordinator of the Water, Energy and Food Nexus at Texas A&M Energy Institute; and lecturer at the Artie McFerrin Department of Chemical Engineering.

The ETI has helped catalyze “cross-disciplinary cooperation” to expand funding opportunities for UH faculty, which includes direct funding of over 24 projects via seed grants. As the new COO, Sengupta will work alongside founding executive director of the institute, Joe Powell, their executive team and the ETI advisory board to develop and implement strategic plans. Her position is partially funded by a $500,000 grant from the Houston-based Cullen Foundation.

“We are excited to have Dr. Sengupta join us at UH to help drive the Energy Transition Institute to fulfill its mission in educating students, expanding top-tier research, and providing thought leadership in sustainable energy and chemicals for the Houston area and beyond,” Powell adds. “Dr. Sengupta brings a strong background and network in collaborating with academic, community, governmental and industry partners to build the coalitions needed for success.”

These appointments are part of a memorandum of understanding that Argonne, located in the Chicago area, recently signed with the Greater Houston Partnership. Photo via UH.edu

3 top DOE researchers take professor positions at University of Houston

new hires

Three top researchers at the U.S. Department of Energy’s Argonne National Laboratory have accepted joint appointments at the University of Houston.

“This strategic collaboration leverages the combined strengths of Argonne and the [university] to further critical research efforts, public-private partnerships, and educational opportunities for students in the energy transition and lead to transformational advancement of commercial scale energy industries,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, says in a news release.

These appointments are part of a memorandum of understanding that Argonne, located in the Chicago area, recently signed with the Greater Houston Partnership. The agreement seeks to accelerate decarbonization efforts in the Houston area.

The three scientists appointed to positions are UH are:

  • Zach Hood, whose appointment is in the Department of Electrical and Computer Engineering at the UH Cullen College of Engineering. He’ll be hosted by Yan Yao, a UH professor who is principal investigator at the Texas Center for Superconductivity.
  • Jianlin Li, whose appointment also is in the Department of Electrical and Computer Engineering. He plans to establish a dry room facility at UH and conduct research on energy storage technologies, electrode processing, and cell manufacturing.
  • Michael Wang, the inaugural Distinguished Senior Scholar at UH’s Energy Transition Institute. His objectives include advancing research in decarbonizing the oil and gas sector through carbon management and transitioning to renewable energy sources. Wang will conduct seminars and present lectures in environmental sustainability, lifecycle, and techno-economic analysis of energy technologies, while helping Argonne tap into the university’s talent pool.

“With more than 30 years of experience, Dr. Wang brings critical tools and expertise to the UH Energy Transition Institute, which is dedicated to unlocking the transformative potential within three critical domains: hydrogen, carbon management, and circular plastics,” says Joe Powell, founding executive director of the Energy Transition Institute. “These areas not only present opportunities for reshaping the energy sector but also stand as pillars for societal sustainable development and decarbonization.”

Joe Powell has been named to a committee for the United States Department of Energy. Photo courtesy of UH

DOE names Houston energy transition leader to advisory committee

here to help

U.S. Energy Secretary Jennifer Granholm appointed a Houston leader to a prestigious committee.

Joe Powell, founding executive director of the Energy Transition Institute at the University of Houston, has been named to the U.S. Department of Energy’s Industrial Technology Innovation Advisory Committee (ITIAC), which consists of 18 members of “diverse stakeholders” according to a news release from the university.

“The collaborative work of the ITIAC aligns seamlessly with the mission of the Energy Transition Institute at the University of Houston," Powell says in a news release. “Together, we will endeavor to drive impactful change in the realm of industrial decarbonization and pave the way for a sustainable future.”

Powell brings 36 years of industry experience to the committee, as he is a distinguished member of the National Academy of Engineering (NAE) and former chief scientist at Shell. He was recruited by the University of Houston in 2022 through a matching grant from the Texas Governor’s University Research Initiative (GURI).

The Energy Transition Institute at UH focuses on hydrogen, carbon management, and circular plastics and collaborates closely with the University's Hewlett Packard Enterprise Data Science Institute and researchers from various disciplines, and other partners in academia and various industries.

Also named to the committee is Chevron Technology Venture's general manager of strategy and technology, Akshay Sahni.

The committee’s mandate includes identifying potential investment opportunities and technical assistance programs. They also assist in helping to bring decarbonization technologies into the marketplace. Committee members will evaluate DOE’s department-wide decarbonization efforts, which includes initiatives that advance the two Energy Earthshots related to industrial decarbonization in the Clean Fuels & Products Shot and the Industrial Heat Shot.

University of Houston students Sarah Grace Kimberly and Emma Nicholas won UH Energy Transition Institute's inaugural Circular Plastics Challenge. Photo via UH.edu

Inaugural Houston challenge names winning team with plastics solution

first place

Dozens of Houston college students tackled circular economy challenges, and two came out on top by winning the top award.

University of Houston’s Energy Transition Institute hosted a challenge for students to address the issue of plastic waste and create a real-world circular economy, as over 60 students participated in the inaugural Circular Plastics Challenge.

Six finalist teams presented their solutions at the 2023 Energy Night hosted by the UH Energy Coalition with final pitches ranging from transportation emissions, renewable packaging and sustainable material, drones to limit excess packaging, and more topics aimed to reduce use.

Sarah Grace Kimberly and Emma Nicholas were the challenge winners. The team proposed using a liquid-based membrane filter inserted into household drains to combat microplastics found in common personal care products, such as makeup and hygiene items. The membrane’s function would act as a magnet, which would attract and capture microplastics from wastewater in showers and sinks. Both juniors from the C.T. Bauer College of Business also won the viewer’s choice award from their peers.

“We wanted to provide a simple solution to a growing problem,” Kimberly says in a news release. “Before we did this project, we didn’t know that microplastics existed, let alone in our makeup. I didn’t know I was basically putting plastic on my face every single day and washing it off into our drains. Because it’s an unseen problem, it’s hard to address.”

UH’s ETI is an academic research institute that focuses on advancing environmentally responsible energy efforts.

“If you look at the wide variety of proposals and approaches, you can see the complexity of the problem and all the different things that society must consider to find solutions,” ETI Founding Executive Director Joe Powell says in the release. “I think circularity in plastics and chemicals is as difficult to address as the net-zero issue within the energy sector, if not more. We have a unique opportunity here to tackle both, and it’s really great to see our students thinking ahead.

Other finalists included Wolff Center for Entrepreneurship seniors Nicolas Einarsson, Bennett Mainini, Arianna Chavarria, and Fernanda Ruelas, who secured second place with their renewable packaging company presentation titled “ShipSafe.”

Reverse Logistics — with team members Hasti Seraji, Farzane Ezzati, and Haowei Yang — earned third place for their consumer-driven reverse logistics approach to recycling packaging.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Geothermal exec on Houston expansion, commercialization and more

Q&A

Challenges in the energy transition often center around two questions: Where will organizations find the resources? And how will projects be financed?

XGS Energy's next-gen closed-loop geothermal well architecture addresses both issues head-on. The California-based company saw massive growth in the Houston market last year and recently completed a 100-meter field demonstration in central Texas, marking a major milestone for its technology's commercialization and potential for scale.

In an interview with EnergyCapital, Axel-Pierre Bois, XGS's Chief Technology Officer, shares what drew him to the geothermal space, why XGS is expanding in Houston and what the company's plans are for the year ahead.

How does XGS Energy's technology address the biggest challenges in geothermal energy?

XGS Energy is developing a geothermal system that decouples geothermal energy from its traditional dependence on water and geology to deliver affordable, clean energy anywhere there is hot rock.

Historically, geothermal resources have been hard to locate, as conventional systems require the overlap of hot rock, porous and permeable geology, and abundant water to produce energy, limiting their potential to a few select hot spots worldwide. Instead of relying on an underground fracture network that drives the geology and water requirements, the base component of XGS’s system is a single well, in which fluid is pumped to a hot rock resource and then returned to the surface through a tube-in-shell design, creating a sealed, closed loop. This allows XGS to produce geothermal energy anywhere where there is hot rock, unlocking terawatt-scale potential in the U.S. alone.

Geothermal systems have also struggled to secure project financing, as many systems have historically faced high levels of unplanned cost risk due to factors including water loss and production uncertainty. XGS’s sealed, closed-loop system ensures that it can provide reliable, predictable electricity throughout its lifespan. XGS also boosts the cost-competitiveness of its system through our major innovation, a proprietary thermally conductive materials system that is installed downhole around each well, increasing the heat transferred to the closed-loop system by 30-50%.

What has drawn you to a career in the geothermal energy space?

I have been in the subsurface industry for over 30 years, developing technical solutions for companies in the fields of geosciences, underground storage, upstream oil and gas, and geothermal heat harvesting to help improve their overall economic, ethical and environmental footprints. In 2009, I founded Curistec, a technology company providing research, engineering and technical services for geomechanics, wellbore integrity, well abandonment, cement design and cement and rock testing. A few years back, Curistec assisted with the Iceland Deep Drilling Project, helping to develop cement formulations for superhot geothermal well applications to enable drilling in high-temperature environments. As I looked toward the future, it became clear that next-generation geothermal technologies would transform the geothermal energy industry and open new markets worldwide. Curistec had been working closely with the XGS Energy team as technology partners for several years, so joining the team directly to help shape the technology development was an exciting opportunity to help develop and deploy a new system to unlock the full terawatt-scale potential of geothermal energy.

Tell us about the 100-meter field demonstration in central Texas completed in 2024 — what all did you and your team learn from the test?

Our 100-meter field demonstration in central Texas marked a significant step in our progress toward deploying geothermal energy in a commercial setting. With this field operation, we successfully demonstrated our ability to mix, pump and place our thermally conductive materials system at a commercial scale, using off-shelf tools and technologies. This was a significant milestone, taking us from theoretical models and laboratory tests to field-scale operations, proving that our novel geothermal system is operationally viable in real-world well conditions.

The completion of the Texas field demonstration advanced XGS into the new wave of geothermal innovators that are putting real steel in the ground. In 2024, we kicked off construction at our commercial-scale demonstration in California and are excited to share updates in the year ahead.

Last year, XGS Energy leased over 10,000 square feet of office space in Memorial City. How has Houston's business community and opportunities benefitted the company?

Houston, the epicenter of the oil and gas industry, has become a hub of energy innovation, offering attractive incentives for growing companies like XGS. The region’s workforce, which is home to some of the best subsurface engineers and operational talent in the energy sector, was a key factor for XGS when we were planning our operational roadmap. This expertise, paired with proximity to our partners in the field services industries, like cementing and drilling, is both apracticaland tactical advantage for XGS.

We’ve built a strong technical and operational team here at XGS, with experience from the oil and gas industry, utilities and power project developers. XGS is planning for continued growth in the Houston area, leveraging the region’s leading engineering and operational workforce and its intensifying interest in supporting the energy transition.

What are XGS Energy's goals for 2025?

In 2024, the XGS Energy team made significant progress toward our goal of providing clean, round-the-clock energy with our solid-state geothermal system. In 2025, XGS Energy will be focused on deploying its geothermal system at a commercial scale, starting with the completion of our full-scale prototype in California. XGS will also continue accelerating our commercial traction, expanding our already robust and highly differentiated geothermal resource evaluation toolkit, advancing our global project pipeline, and growing our team to strengthen our operational capability and capacity.

Environmentalists say Trump's energy order would subvert Endangered Species Act

In The News

Environmental groups concerned about loss of protections for vanishing animals see one of President Donald Trump’s early executive orders as a method of subverting the Endangered Species Act in the name of fossil fuel extraction and corporate interests.

Trump declared an energy emergency via executive order earlier this week amid a promise to “drill, baby, drill.” One section of the order states that the long-standing Endangered Species Act can’t be allowed to serve as an obstacle to energy development.

That language is a pathway to rolling back protections for everything from tiny birds like the golden-cheeked warbler to enormous marine mammals like the North Atlantic right whale, conservation groups said Wednesday. Some vowed to fight the order in court.

The Endangered Species Act has been a hurdle for the development of fossil fuels in the U.S. for decades, and weakening the act would accelerate the decline and potential extinction of numerous endangered species, including whales and sea turtles, said Gib Brogan, a campaign director with conservation group Oceana.

“This executive order, in a lot of ways, is a gift to the oil and gas industry and is being sold as a way to respond to the emergency declaration by President Trump,” Brogan said. “There is no emergency. The species continue to suffer. And this executive order will only accelerate the decline of endangered species in the United States.”

The Endangered Species Act has existed for more than 50 years and is widely credited by scientists and environmentalists with helping save iconic American species such as the bald eagle from extinction. A key section of the act directs federal agencies to work to conserve endangered and threatened species and use their authorities to protect them.

Trump's order declaring a national energy emergency took direct aim at the authority provided by the Endangered Species Act. It orders federal departments to treat energy production as an emergency, which could help expedite approval of energy projects that might otherwise be held up.

The order also convenes a committee to “identify obstacles to domestic energy infrastructure specifically deriving from implementation of the ESA or the Marine Mammal Protection Act,” another landmark conservation law. It states the committee could consider regulatory reforms, including “species listings,” as part of its work.

The Trump administration did not respond to a request for comment on the executive order. The order defines energy mostly as fossil fuels such as crude oil and and coal and does not include renewable energies such as wind power. It also states that energy production is an emergency because “an affordable and reliable domestic supply of energy is a fundamental requirement for the national and economic security of any nation.”

While environmentalists herald the Endangered Species Act as a landmark law, pro-development and free market interests have long criticized it for holding up the building of energy, infrastructure, housing and other projects. Some, including the influential Heartland Institute, applauded Trump's declaration of an energy emergency this week.

Conservatives have also decried the Endangered Species Act as inefficient. It took the U.S. Fish and Wildlife Service years to follow the process of potentially delisting the golden-cheeked warbler, a small songbird that breeds only in the forests of central Texas, said Connor Mighell, an attorney with Texas Public Policy Foundation, a free market research institute.

Trump's executive order could help stop the Endangered Species Act from resulting in drawn-out permitting processes and lengthy litigation, said Brent Bennett, energy policy director for Texas Public Policy Foundation.

“We're hoping that can improve some of the permitting processes and remove some of these barriers,” Bennett said.

But the act is critical to maintaining species threatened with extinction, environmentalists said. They cite whales such as the North Atlantic right whale, which numbers less than 400 and is vulnerable to collisions with ships and entanglement in fishing gear, as an example of an animal that must be protected under the act. The Rice's whale, which numbers even fewer and is vulnerable to disruption from oil drilling in the Gulf of Mexico, is another prime example, environmentalists said.

The nation's symbol, the bald eagle, is a perfect example of the importance and effectiveness of the Endangered Species Act, said Andrew Bowman, president of the conservation group Defenders of Wildlife.

“President Trump’s election to office did not come with a mandate to deny Americans a clean and healthy environment or destroy decades of conservation successes that have ensured the survival and recovery of some of America’s most iconic species, including the bald eagle, which was newly named our country’s national bird and is only with us today thanks to the Endangered Species Act," Bowman said.

Texas ranks as No. 2 manufacturing hub in U.S., behind only California

by the numbers

Texas ranks among the country’s biggest hubs for manufacturing, according to a new study.

The study, conducted by Chinese manufacturing components supplier YIJIN Hardware, puts Texas at No. 2 among the states when it comes to manufacturing-hub status. California holds the top spot.

YIJIN crunched data from the U.S. Census Bureau, International Trade Administration, and National Association of Manufacturers to analyze manufacturing activity in each state. The study weighed factors such as number of manufacturing establishments, number of manufacturing employees, total value of manufacturing output, total manufacturing exports and manufacturing’s share of a state’s gross domestic product.

Here are Texas’ figures for those categories:

  • 19,526 manufacturing establishments
  • 847,470 manufacturing employees
  • Total manufacturing output of $292.6 billion
  • Total manufacturing exports of $291.9 billion
  • 11.3 percent share of state GDP

According to Texas Economic Development & Tourism, the state’s largest manufacturing sectors include automotive, tech, petroleum, chemicals, and food and beverage.

“The Lone Star State is truly a manufacturing powerhouse,” the state agency says.

In an October speech, Texas Gov. Greg Abbott praised the state’s robust manufacturing industry.

“We are proud that Texas is home to a booming manufacturing sector,” he said. “Thanks to our strong manufacturing sector, ‘Made in Texas’ has never been a bigger brand.”

Houston is a cornerstone of Texas’ manufacturing industry. The region produces more than $75 billion worth of goods each year, according to the Greater Houston Partnership. That makes Houston the second-ranked U.S. metro area for manufacturing GDP. The more than 7,000 manufacturing establishments in the area employ over 223,000 people.

“As one of the most important industrial bases in the world, Houston has access to many global markets thanks to its central location within the U.S. and the Americas,” the partnership says.