cleaning up nuclear energy

Houston research team discovers new application for crystals in nuclear energy

Radioactive waste is an obstacle to nuclear energy adoption potential. This research team from the University of Houston has discovered a potential solution. Photo via uh.edu

Researchers at the University of Houston have unlocked a new way to use crystals to safely dispose of radioactive waste.

The team of UH researchers published a paper in Cell Reports Physical Science this month detailing their discovery of how to use molecular crystals to capture large quantities of iodine, one of the most common products of radioactive fission, which is used to create nuclear energy.

According to a statement from UH, these molecular crystals are based on cyclotetrabenzil hydrazones. Ognjen Miljanic, professor of chemistry and author of the paper, and his team have created the organic molecules containing only carbon, hydrogen and oxygen atoms, which create ring-like crystals with eight smaller offshoots, earning them the nickname "The Octopus."

The discovery was made by Alexandra Robles, the first author of the study and a former doctoral student in Miljanic’s lab.

The crystals have an uptake capacity similar to that of porous metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), which traditionally have been considered the “pinnacle of iodine capture materials," according to UH. They allow iodine to be moved from one area to another, are reusable and can be produced using commercially available chemicals for about $1 per gram in an academic lab.

“They are quite easy to make and can be produced at a large scale from relatively inexpensive materials without any special protective atmosphere,” Miljanic said in a statement.

The team also believes the crystals can be used to capture additional elements like carbon dioxide.

“This is a type of simple molecule that can do all sorts of different things depending on how we integrate it with the rest of any given system,” Miljanic continued. “So, we’re pursuing all those applications as well.”

Next up, Miljanic is looking to find a partner that will help the team explore practical applications and commercial aspects.

UH has been making net-zero news lately. A team of students from UH placed in the top three teams in a national competition for the Department of Energy earlier this summer. The college also shared details about its forthcoming innovation hub, which will house UH's Energy Transition Institute, as well as other centers and programs.

Joseph Powell, founding director of UH's Energy Transition Institute, sat down with EnergyCapitalHTX last week to talk about UH's vision for the organization.

Ognjen Miljanic is a University of Houston professor of chemistry and author of the paper. Photo via UH.edu

Trending News

A View From HETI

Jarred Shaffer has been named director of the new Texas Advanced Nuclear Energy Office. Photo via LinkedIn.

As Texas places a $350 million bet on nuclear energy, a budget and policy adviser for Gov. Greg Abbott has been tapped to head the newly created Texas Advanced Nuclear Energy Office.

Jarred Shaffer is now director of the nuclear energy office, which administers the $350 million Texas Advanced Nuclear Development Fund. The fund will distribute grants earmarked for the development of more nuclear reactors in Texas.

Abbott said Shaffer’s expertise in energy will help Texas streamline nuclear regulations and guide “direct investments to spur a flourishing and competitive nuclear power industry in the Lone Star State. Texas will lead the nuclear renaissance.”

The Texas Nuclear Alliance says growth of nuclear power in the U.S. has stalled while China and Russia have made significant gains in the nuclear sector.

“As Texas considers its energy future, the time has come to invest in nuclear power — an energy source capable of ensuring grid reliability, economic opportunity, and energy and national security,” Reed Clay, president of the alliance, said.

“Texas is entering a pivotal moment and has a unique opportunity to lead. The rise of artificial intelligence and a rebounding manufacturing base will place unprecedented demands on our electricity infrastructure,” Clay added. “Meeting this moment will require consistent, dependable power, and with our business-friendly climate, streamlined regulatory processes, and energy-savvy workforce, we are well-positioned to become the hub for next-generation nuclear development.”

Abbott’s push for increased reliance on nuclear power in Texas comes as public support for the energy source grows. A 2024 survey commissioned by the Texas Public Policy Institute found 55 percent of Texans support nuclear energy. Nationwide support for nuclear power is even higher. A 2024 survey conducted by Bisconti Research showed a record-high 77 percent of Americans support nuclear energy.

Nuclear power accounted for 7.5 percent of Texas’ electricity as of 2024, according to the Nuclear Energy Institute, but made up a little over 20 percent of the state’s clean energy. Currently, four traditional reactors produce nuclear power at two plants in Texas. The total capacity of the four nuclear reactors is nearly 5,000 megawatts.

Because large nuclear plants take years to license and build, small factory-made modular reactors will meet much of the shorter-term demand for nuclear energy. A small modular reactor has a power capacity of up to 300 megawatts. That’s about one-third of the generating power of a traditional nuclear reactor, according to the International Atomic Energy Agency.

A report from BofA Global Research predicts the global market for small nuclear reactors could reach $1 trillion by 2050. These reactors are cheaper and safer than their larger counterparts, and take less time to build and produce fewer CO2 emissions, according to the report.

Global nuclear capacity must triple in size by 2050 to keep up with energy demand tied to the rise of power-gobbling AI data centers, and to accomplish decarbonization and energy security goals, the BofA report says. Data centers could account for nine percent of U.S. electricity demand by 2035, up from about four percent today, according to BloombergNEF.

As the Energy Capital of the World, Houston stands to play a pivotal role in the evolution of small and large nuclear reactors in Texas and around the world. Here are just three of the nuclear power advancements that are happening in and around Houston:

Houston is poised to grab a big chunk of the more than 100,000 jobs and more than $50 billion in economic benefits that Jimmy Glotfelty, a former member of the Texas Public Utility Commission, predicts Texas will gain from the state’s nuclear boom. He said nuclear energy legislation signed into law this year by Abbott will provide “a leg up on every other state” in the race to capitalize on the burgeoning nuclear economy.

“Everybody in the nuclear space would like to build plants here in Texas,” Inside Climate News quoted Glotfelty as saying. “We are the low-regulatory, low-cost state. We have the supply chain. We have the labor.”

Trending News