cleaning up nuclear energy

Houston research team discovers new application for crystals in nuclear energy

Radioactive waste is an obstacle to nuclear energy adoption potential. This research team from the University of Houston has discovered a potential solution. Photo via uh.edu

Researchers at the University of Houston have unlocked a new way to use crystals to safely dispose of radioactive waste.

The team of UH researchers published a paper in Cell Reports Physical Science this month detailing their discovery of how to use molecular crystals to capture large quantities of iodine, one of the most common products of radioactive fission, which is used to create nuclear energy.

According to a statement from UH, these molecular crystals are based on cyclotetrabenzil hydrazones. Ognjen Miljanic, professor of chemistry and author of the paper, and his team have created the organic molecules containing only carbon, hydrogen and oxygen atoms, which create ring-like crystals with eight smaller offshoots, earning them the nickname "The Octopus."

The discovery was made by Alexandra Robles, the first author of the study and a former doctoral student in Miljanic’s lab.

The crystals have an uptake capacity similar to that of porous metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), which traditionally have been considered the “pinnacle of iodine capture materials," according to UH. They allow iodine to be moved from one area to another, are reusable and can be produced using commercially available chemicals for about $1 per gram in an academic lab.

“They are quite easy to make and can be produced at a large scale from relatively inexpensive materials without any special protective atmosphere,” Miljanic said in a statement.

The team also believes the crystals can be used to capture additional elements like carbon dioxide.

“This is a type of simple molecule that can do all sorts of different things depending on how we integrate it with the rest of any given system,” Miljanic continued. “So, we’re pursuing all those applications as well.”

Next up, Miljanic is looking to find a partner that will help the team explore practical applications and commercial aspects.

UH has been making net-zero news lately. A team of students from UH placed in the top three teams in a national competition for the Department of Energy earlier this summer. The college also shared details about its forthcoming innovation hub, which will house UH's Energy Transition Institute, as well as other centers and programs.

Joseph Powell, founding director of UH's Energy Transition Institute, sat down with EnergyCapitalHTX last week to talk about UH's vision for the organization.

Ognjen Miljanic is a University of Houston professor of chemistry and author of the paper. Photo via UH.edu

Trending News

A View From HETI

Devon Energy will buy Houston-based Coterra Energy. Photo via Coterra Energy

Oklahoma City, Oklahoma-based Devon Energy has agreed to buy Houston-based Coterra Energy in a $21.5 billion all-stock deal, forming an energy powerhouse that will be headquartered in Houston. The combined company, boasting an enterprise value of $58 billion, will adopt the Devon brand name.

Revenue for the two publicly traded companies totaled nearly $18.8 billion in the first nine months of 2025. Devon is a Fortune 500 company, but Coterra doesn’t appear in the most recent ranking.

The deal, already approved by the boards of both companies, is expected to close in the second quarter of 2026. Once the transaction is completed, Devon shareholders will own about 54 percent of the combined company and Coterra shareholders will own 46 percent.

“This transformative merger combines two companies with proud histories and cultures of operational excellence, creating a premier shale operator,” says Clay Gaspar, Devon’s president and CEO.

The combined company will be one of the world’s largest shale producers, with third-quarter 2025 production exceeding 550 thousand barrels of oil per day and 4.3 billion cubic feet of gas per day. A significant presence in the Delaware Basin, encompassing hundreds of thousands of acres, will anchor the company’s operations. The 10,000-square-mile Delaware Basin is in West Texas and southeastern New Mexico.

The new Devon also will operate in the Permian Basin, located in West Texas and New Mexico; Marcellus Shale, located in five states in the East; and Anadarko Basin, located in the Texas Panhandle, Colorado, Kansas, and Oklahoma.

Gaspar will be president and CEO of the combined company, and Tom Jorden, chairman, president, and CEO of Coterra, will be non-executive chairman.

Trending News