These five Houston-based energy transition research news articles trended this year on EnergyCapital. Photo via Getty Images

Editor's note: As the year comes to a close, EnergyCapital is looking back at the year's top stories in Houston energy transition. When it comes to the future of energy, Houston has tons of forward-thinking minds hard at work researching solutions to climate change and its impact on Earth. The following research-focused articles that stood out to readers this year — be sure to click through to read the full story.

University of Houston secures $3.6M from DOE program to fund sustainable fuel production

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release. Continue reading.

Rice University semiconductor researchers join DARPA-funded Texas team

Researchers from Rice University and the University of Texas have teamed up for semiconductor microsystem innovation. Photo courtesy of UT

A team led by the University of Texas at Austin and partnered with Rice University was awarded $840 million to develop “the next generation of high-performing semiconductor microsystems" for the U.S. Department of Defense.

The Defense Advanced Research Projects Agency (DARPA) selected UT’s Texas Institute for Electronics (TIE) semiconductor consortium to establish a national open access R&D and prototyping fabrication facility.

The facility hopes to enable the DOD to create higher performance, lower power, lightweight, and compact defense systems. The technology could apply to radar, satellite imaging, unmanned aerial vehicles, or other systems, and ultimately will assist with national security and global military leadership. As a member of DARPA’s Next Generation Microelectronics Manufacturing (NGMM) team, Rice’s contributions are key.

Executive vice president for research Ramamoorthy Ramesh and the Rice researchers will focus on technologies for improving computing efficiency. In a Rice press release, Ramesh notes the need to enhance “energy-efficient computing” which highlights Rice’s qualifications to contribute to the solution. Continue reading.

Houston lab develops reactor that sustainably turns waste into ammonia

Led by Haotian Wang (left) and Feng-Yang Chen, the Rice University team published a study this month detailing how its reactor system sustainably converts waste into ammonia. Photo by Jeff Fitlow/Rice University

A team of Rice University engineers has developed a reactor design that can decarbonize ammonia production, produce clean water and potentially have applications in further research into other eco-friendly chemical processes.

Led by Rice associate professor Haotian Wang, the team published a study this month in the journal Nature Catalysis that details how the new reactor system sustainably and efficiently converts nitrates (common pollutants found in industrial wastewater and agricultural runoff) into ammonia, according to the university. The research was supported by Rice and the National Science Foundation.

“Our findings suggest a new, greener method of addressing both water pollution and ammonia production, which could influence how industries and communities handle these challenges,” Wang says in a statement. “If we want to decarbonize the grid and reach net-zero goals by 2050, there is an urgent need to develop alternative ways to produce ammonia sustainably.” Continue reading.

Houston-area researchers score $1.5M grant to develop storm response tech platform

OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models to support storm response decision makers, has secured an NSF grant. Photo via Getty Images

Researchers from Rice University have secured a $1.5 million grant from the National Science Foundation to continue their work on improving safety and resiliency of coastal communities plagued by flooding and hazardous weather.

The Rice team of engineers and collaborators includes Jamie Padgett, Ben Hu, and Avantika Gori along with David Retchless at Texas A&M University at Galveston. The researchers are working in collaboration with the Severe Storm Prediction, Education and Evacuation from Disasters (SSPEED) Center and the Ken Kennedy Institute at Rice and A&M-Galveston’s Institute for a Disaster Resilient Texas.

Together, the team is developing and hopes to deploy “Open-Source Situational Awareness Framework for Equitable Multi-Hazard Impact Sensing using Responsible AI,” or OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models "to provide timely, reliable and equitable insights to emergency response organizations and communities before, during and after tropical cyclones and coastal storm events," reads a news release from Rice. Continue reading.

$360M DOE grant to fund project that will connect ERCOT to US power grid

For the first time, Texas's ERCOT grid will be connected to other states' grids thanks to funding from the Department of Energy. Photo via Getty Images

Thanks to recently announced funding, the power grid for the territory served by the Electric Reliability Council of Texas (ERCOT) will be connected to grids in other states.

Officials hope building a 320-mile transmission line that connects the ERCOT electric grid to electric grids in the Southeast will prevent power outages like the massive blackout that occurred in 2022 when a winter storm blasted Texas.

San Francisco-based Pattern Energy says its Southern Spirit project will cost more than $2.6 billion. Full-scale construction is supposed to get underway in 2028, and the project is set to go online in 2031. Continue reading.

ReVolt Battery Technology Corp. is based out of the University of Houston Innovation Center. Photo via revoltbatterytechnology.com

Houston SaaS startup on a mission of decarbonizing public transportation secures SBIR grant

seeing green

A Houston company that's electrifying public transportation secured a SBIR Phase 1 award from the Department of Transportation.

ReVolt Battery Technology Corp., software-as-a-service company based out of the University of Houston Innovation Center, received the award. The company did not disclose the monetary value of the funding, but indicated that the grant will support ReVolt's "research on reducing auxiliary power consumption in battery electric buses," according to a statement from the company.

"ReVolt stands out as one of only 23 small businesses across the United States to be selected in this highly competitive process, which focuses on creating innovative infrastructure for safe and secure transportation," reads the statement.

The company's software technology platform consists of charging infrastructure, electric vehicle scheduling, fleet digital twin, and greenhouse gas reduction and estimation.

The company was founded in 2021 by Jan Naidu and, according to Crunchbase, has raised $200,000 in pre-seed funding.

A Rice University team researching carbon nanotube synthesis has received $4.1 million funding from both Rice’s Carbon Hub and The Kavli Foundation. Photo by Gustavo Raskosky/Rice University

Houston-led research team granted $4.1M for carbon synthesis project, calls for collaboration

fresh funding

A Rice University-led team of scientists has been awarded a $4.1 million grant to optimize a synthesis process that could make carbon materials sustainable and affordable on a large scale.

Known as carbon nanotube (CNT) synthesis, the process has the ability to create hollow cylindrical nanoscale structures made from carbon atoms that are strong, lightweight and carry heat and electricity well. CNT synthesis evolved across multiple countries around the same time, according to Rice. But to scale up the process in a way that could create alternatives to materials dependent on heavy industry, Matteo Pasquali, the team's leader and the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, says collaboration will be required.

“We have to apply a collaborative mindset to solve this problem,” Pasquali says in a statement. “We believe that by bringing together a dedicated interdisciplinary community, this project will lead to improvements in reactor efficiency and help identify further gaps in instrumentation and modeling.”

The grant seeks to achieve that. The funds come from both Rice’s Carbon Hub, which contributed $2.2 million to the team, and The Kavli Foundation, which granted $1.9 million in the form of a Kavli Exploration Award in Nanoscience for Sustainability.

The Kavli Foundation supports research in astrophysics, nanoscience, neuroscience and theoretical physics. Winners of its Kavli Prize, which recognizes scientific breakthroughs, often go on to win the Nobel Prize.

“We are proud to partner with Rice University to support this important high-risk, high-reward research,” says Amy Bernard, director of life sciences at The Kavli Foundation, says in a statement.

Pasquali is the director and one of the creators of Rice's Carbon Hub, a collaborative group of corporations, researchers, universities and nonprofits focused on decarbonizing the economy. He says the grant will help the team develop tools to shed light on CNT formation and reaction zones.

“We are at a critical juncture in carbon research, and it is really important that we shed light on the physical and chemical processes that drive CNT synthesis,” Pasquali says. “Currently, reactors are black boxes, which prevents us from ramping up synthesis efficiency. We need to better understand the forces at play in CNT formation by developing new tools to shed light on the reaction zone and find ways to leverage it to our advantage.”

Boris Yakobson, the Karl F. Hasselmann Professor of Engineering and professor of materials science and nanoengineering at Rice, and Thomas Senftle, assistant professor of chemical and biomolecular engineering at Rice, are also involved in the project. Other collaborators hail from the UK, Italy, Korea, and Spain, as well as U.S. labs and universities, including Harvard, Stanford, MIT and others.

In October, a separate team of Rice researchers released a study on a new synthesis process with applications in developing commercially relevant solar cells.

Researchers at the University of Houston are proposing that supplying hydrogen for transportation in the greater Houston area could also be profitable. Photo via UH.edu

Houston research shows how much hydrogen-powered vehicles would cost at the pump

hi, hydrogen

It's generally understood that transitioning away from gas-powered vehicles will help reduce the 230 million metric tons of carbon dioxide gas released each year by the transportation sector in Texas.

Now, researchers at the University of Houston are proposing that supplying hydrogen for transportation in the greater Houston area could also be profitable.

The research team has done the math. In a white paper, "Competitive Pricing of Hydrogen as an Economic Alternative to Gasoline and Diesel for the Houston Transportation Sector," the team compared three hydrogen generation processes—steam methane reforming (SMR), SMR with carbon capture (SMRCC), and electrolysis using grid electricity and water—and provided cost estimates and delivery models for each.

The team found that SMRCC hydrogen can be supplied at about $6.10 per kilogram of hydrogen at the pump, which they say is competitive and shows promise for hydrogen-powered fuel cell electric vehicles (FCEVs).

FCEVs refuel with hydrogen in five minutes and produce zero emissions, according to UH.

"This research underscores the transformative potential of hydrogen in the transportation sector,” Alexander Economides, a co-author on the study, UH alumnus and CEO Kiribex Inc., said in the statement. “Our findings indicate that hydrogen can be a cost-competitive and environmentally responsible choice for consumers, businesses, and policymakers in the greater Houston area."

Economides was joined on the paper by co-authors Christine Ehlig-Economides, professor and Hugh Roy and Lillie Cranz Cullen Distinguished University Chair at UH, and Paulo Liu, research associate in the Department of Petroleum Engineering at UH.

Additionally, the team says Houston is an ideal leader for this transition.

“(Houston) has more than sufficient water and commercial filtering systems to support hydrogen generation,” the study states. “Add to that the existing natural gas pipeline infrastructure, which makes hydrogen production and supply more cost effective and makes Houston ideal for transitioning from traditional vehicles to hydrogen-powered ones.”

The study also discusses tax incentives, consumer preferences, grid generation costs and many other details.

A University of Houston team looked into what areas in Houston had the highest impact on emissions and how certain meteorological factors play into ozone formation. Photo via UH.edu

UH team unlocks innovative approach to pinpoint pollution factors

zooming in on emissions

A team of researchers at the University of Houston are using machine learning to help guide pollution fighting strategies.

As reported in the journal Environmental Pollution last month, the team used the SHAP algorithm of machine learning (a game theory approach) and the Positive Matrix Factorization to pinpoint what areas in Houston had the highest impact on emissions and how certain meteorological factors play into ozone formation.

The paper was authored by Delaney Nelson, a doctoral student at the Department of Earth and Atmospheric Sciences of UH, and Yunsoo Choi, corresponding author and professor of atmospheric chemistry, AI deep learning, air quality modeling and satellite remote sensing.

The team's research closely tracked nitrogen-based compound and volatile organic compound measurements from Texas Commission on Environmental Quality's monitoring stations in the Houston area. After importing measurements from The Lynchburg Ferry station in Houston's ship channel and the urban Milby Park station, the machine learning and SHAP analysis showed a chemically definitive difference between the two areas.

For example, at the industrial station, the most impactful sources of pollution were from oil and gas flaring/production. At the urban site n_decane and industrial emissions/evaporation had the most impact on ozone.

According to Nelson and Choi, this shows that the machine learning and SHAP analysis approach can be used to tailor more precise air quality management strategies in different areas based on the site's unique characteristics.

“Once we know the specific emission sources and factors, we can develop targeted strategies to reduce emissions, which will in turn reduce ozone in the air and make it healthier for everyone," Choi said in a statement.

“Pollution is a critical issue in Houston, where you have extreme high heat and high concentration of ozone in the summers. The types of insights we got are very useful information for the local community to develop effective policies. That’s why we put our time, effort and technological expertise into this project," he continued.

Next the team envisions applying their approach in different cities and across the country.

“Austin, San Antonio and Dallas all have different characteristics, so I expect (volatile organic compound) sources will also be different,” Choi said. “Identifying VOC sources in different cities is very important because each city should have its own unique pollution fighting strategy.”

This summer, the City of Houston released an updated report on its major strategies to combat climate change and build a more resilient future for its residents.

Venkatesh Balan and his team at UH are researching ways fresh- and salt-water phototropic organisms, or microalge, can sequester carbon from industrial refineries and convert it into useful byproducts. Photo via UH.edu

Houston team researching how algae can combat climate change

seeing green

Researchers at the University of Houston are looking at an alternative way to capture carbon that uses a surprising conduit: algae.

In a newly published article in Green Chemistry, a journal of the Royal Society of Chemistry, Venkatesh Balan, associate professor of engineering technology at UH, details how he and his team are researching ways fresh- and salt-water phototropic organisms, or microalgae, can sequester carbon from industrial refineries and convert it into useful byproducts.

Balan is joined by UH researchers James Pierson and Hasan Husain, Sandeep Kimar from Old Dominion University, Christopher Saffron of Michigan State University, and Vinod Kumar from Cranfield University in the United Kingdom.

According to a release from UH, Balan and research assistant Masha Alian have uncovered how microalgae can produce fungus like lichen and create healthy food products. After microalge captures the carbon, it then converts that CO2 into mass-produced proteins, lipids and carbohydrates, according to the team's research.

“We are coming up with the alternate approach of using algae to fix the CO2 then using the carbon to make bioproducts that are useful to mankind,” Balan said in the release.

The method offers an alternative to other carbon capture options that aim to burry carbon, which is expensive and energy intensive, according to UH.

Balan says this research also has applications in wastewater treatment and the production of food, fertilizers, fuels and chemicals, all of which could lessen the dependency on fossil fuels in the future.

"On your table or in your pantry, you see food products. What’s harder to visualize are the greenhouse gasses emitted by the orchard that grows the fruit, the factory that makes the breakfast cereal, the transportation that brings the cookies to your neighborhood, even your own commute to buy the food," Balan said. "It adds up, but the problem is easy to ignore because we can’t see it. Yet all consumers contribute, in our own way, to the greenhouse effect.”

The UH team is just one of many Houston groups looking at unconventional, although natural ways to combat climate change.

In September, Rice University announced that two researchers were awarded a three-year grant from the Department of Energy for their research into the processes that allow soil to store roughly three times as much carbon as organic matter compared to Earth's atmosphere.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

ExxonMobil invests over $200M in Texas advanced recycling sites

doubling down

ExxonMobil announced that it plans to invest more than $200 million to expand its advanced recycling operations at its Baytown and Beaumont sites that are expected to start in 2026. The new operations can help increase advanced recycling rates and divert plastic from landfills, according to ExxonMobil.

“We are solutions providers, and this multi-million-dollar investment will enhance our ability to convert hard-to-recycle plastics into raw materials that produce valuable new products,” says Karen McKee, president of ExxonMobil Product Solutions, in a news release.

The investment plans to add 350 million pounds per year of advanced recycling capacity at Baytown and Beaumont, which will bring ExxonMobil’s total capacity to 500 million pounds annually. The first Baytown facility started in 2022 and represents one of the largest advanced recycling facilities in North America by having processed more than 70 million pounds of plastic waste.

“At our Baytown site, we’ve proven advanced recycling works at scale, which gives us confidence in our ambition to provide the capacity to process more than 1 billion pounds of plastic per year around the world,” McKee said in a news release. “We’re proud of this proprietary technology and the role it can play in helping establish a circular economy for plastics and reducing plastic waste.”

Advanced recycling works by transforming plastic waste into raw materials that can be used to make products from fuels to lubricants to high-performance chemicals and plastics. Advanced recycling allows for a broader range of plastic waste that won't be mechanically recycled and may otherwise be buried or burned.

ExxonMobil will continue development of additional advanced recycling projects at manufacturing sites in North America, Europe and Asia with the goal of reaching 1 billion pounds per year of recycling capacity by 2027.

Houston-based Fervo Energy collects $255M in additional funding

cha-ching

A Houston company that's responding to rising energy demand by harnessing geothermal energy through its technology has again secured millions in funding. The deal brings Fervo's total funding secured this year to around $600 million.

Fervo Energy announced that it has raised $255 million in new funding and capital availability. The $135 million corporate equity round was led by Capricorn’s Technology Impact Fund II with participating investors including Breakthrough Energy Ventures, CalSTRS, Congruent Ventures, CPP Investments, DCVC, Devon Energy, Galvanize Climate Solutions, Liberty Mutual Investments, Mercuria, and Sabanci Climate Ventures.

The funding will go toward supporting Fervo's ongoing and future geothermal projects.

“The demand for 24/7 carbon-free energy is at an all-time high, and Fervo is one of the only companies building large projects that will come online before the end of the decade,” Fervo CEO and Co-Founder Tim Latimer says in a news release. “Investors recognize that Fervo’s ability to get to scale quickly is vital in an evolving market that is seeing unprecedented energy demand from AI and other sources.”

Additionally, Fervo secured a $120 million letter of credit and term loan facility from Mercuria, an independent energy and commodity group that previously invested in the company.

“In surveying power markets across the U.S. today, the need for next-generation geothermal is undeniable,” Brian Falik, group chief investment officer of Mercuria, adds. “We believe in Fervo not just because their EGS approach is cost-effective, commercially viable, and already being deployed at scale, but because they set ambitious targets and consistently deliver.”

In February, Fervo secured $244 million in a financing round led by Devon Energy, and in September, the company received a $100 million bridge loan for the first phase of its ongoing project in Utah. This project, known as Project Cape, represents a 100x growth opportunity for Fervo, as Latimer explained to InnovationMap earlier this year. As of now, Project Cape is fully permitted up to 2 GW and will begin generating electricity in 2026, per the company.

Other wins for Fervo this year include moving into its new headquarters in downtown Houston, securing a power purchase agreement with California, growing its partnership with Google, and being named amongst the year's top inventions by Time magazine.


———

This article originally ran on InnovationMap.