A team of Rice researchers, including Caroline Ajo-Franklin and Biki Bapi Kundu, has uncovered how certain bacteria breathe by generating electricity. Photo by Jeff Fitlow/Rice University.

New research from Rice University that merges biology with electrochemistry has uncovered new findings on how some bacteria generate electricity.

Led by Caroline Ajo-Franklin, a Rice professor of biosciences and the director of the Rice Synthetic Biology Institute, the team published its findings in the journal Cell in April. The report showed how some bacteria use compounds called naphthoquinones, rather than oxygen, to transfer electrons to external surfaces in a process known as extracellular respiration. In other words, the bacteria are exhale electricity as they breathe.

This process has been observed by scientists for years, but the Rice team's deeper understanding of its mechanism is a major breakthrough, with implications for the clean energy and industrial biotechnology sectors, according to the university.

“Our research not only solves a long-standing scientific mystery, but it also points to a new and potentially widespread survival strategy in nature,” Ajo-Franklin, said in a news release.

The Rice team worked with the University of California, San Diego's Palsson lab to simulate bacterial growth using advanced computer modeling. The simulations modeled oxygen-deprived environments that were rich in conductive surfaces, and found that bacteria could sustain themselves without oxygen. Next, they confirmed that the bacteria continued to grow and generate electricity when placed on conductive materials.

The team reports that the findings "lay the groundwork for future technologies that harness the unique capabilities" of these bacteria with "far-reaching practical implications." The team says the findings could lead to significant improvements in wastewater treatment and biomanufacturing. They could also allow for better bioelectronic sensors in oxygen-deprived environments, including deep-sea vents, the human gut and in deep space.

“Our work lays the foundation for harnessing carbon dioxide through renewable electricity, where bacteria function similarly to plants with sunlight in photosynthesis,” Ajo-Franklin added in the release. “It opens the door to building smarter, more sustainable technologies with biology at the core.”

Rice University's Menachem Elimelech and Yuanmiaoliang “Selina” Chen published a study in Nature Water on mimicking dialysis from the medical field to treat wastewater. Photo by Gustavo Raskosky/Rice University

Houston researchers harness dialysis for new wastewater treatment process

waste not

By employing medical field technology dialysis, researchers at Rice University and the Guangdong University of Technology in China uncovered a new way to treat high-salinity organic wastewater.

In the medical field, dialysis uses a machine called a dialyzer to filter waste and excess fluid from the blood. In a study published in Nature Water, Rice’s team found that mimicking dialysis can separate salts from organic substances with minimal dilution of the wastewater, addressing some of the limitations of previous methods.

The researchers say this has the potential to lower costs, recover valuable resources across a range of industrial sectors and reduce environmental impacts.

“Traditional methods often demand a lot of energy and require repeated dilutions,” Yuanmiaoliang “Selina” Chen, a co-first author and postdoctoral associate in Elimelech’s lab at Rice, said in a news release. “Dialysis eliminates many of these pain points, reducing water consumption and operational overheads.”

Various industries generate high-salinity organic wastewater, including petrochemical, pharmaceutical and textile manufacturing. The wastewater’s high salt and organic content can present challenges for existing treatment processes. Biological and advanced oxidation treatments become less effective with higher salinity levels. Thermal methods are considered “energy intensive” and susceptible to corrosion.

Ultimately, the researchers found that dialysis effectively removed salt from water without requiring large amounts of fresh water. This process allows salts to move into the dialysate stream while keeping most organic compounds in the original solution. Because dialysis relies on diffusion instead of pressure, salts and organics cross the membrane at different speeds, making the separation method more efficient.

“Dialysis was astonishingly effective in separating the salts from the organics in our trials,” Menachem Elimelech, a corresponding author on the study and professor of civil and environmental engineering and chemical and biomolecular engineering at Rice, said in a news release. “It’s an exciting discovery with the potential to redefine how we handle some of our most intractable wastewater challenges.”

A new study on Mars is shining a light on the Earth's own climate mysteries. Image via UH.edu

Houston scientists create first profile of Mars’ radiant energy budget, revealing climate insights on Earth

research findings

Scientists at the University of Houston have found a new understanding of climate and weather on Mars.

The study, which was published in a new paper in AGU Advances and will be featured in AGU’s science magazine EOS, generated the first meridional profile of Mars’ radiant energy budget (REB). REB represents the balance or imbalance between absorbed solar energy and emitted thermal energy across latitudes. An energy surplus can lead to global warming, and a deficit results in global cooling, which helps provide insights to Earth's atmospheric processes too. The profile of Mars’ REB influences weather and climate patterns.

The study was led by Larry Guan, a graduate student in the Department of Physics at UH's College of Natural Sciences and Mathematics under the guidance of his advisors Professor Liming Li from the Department of Physics and Professor Xun Jiang from the Department of Earth and Atmospheric Sciences and other planetary scientists. UH graduate students Ellen Creecy and Xinyue Wang, renowned planetary scientists Germán Martínez, Ph.D. (Houston’s Lunar and Planetary Institute), Anthony Toigo, Ph.D. (Johns Hopkins University) and Mark Richardson, Ph.D. (Aeolis Research), and Prof. Agustín Sánchez-Lavega (Universidad del País, Vasco, Spain) and Prof. Yeon Joo Lee (Institute for Basic Science, South Korea) also assisted in the project.

The profile of Mars’ REB is based on long-term observations from orbiting spacecraft. It offers a detailed comparison of Mars’ REB to that of Earth, which has shown differences in the way each planet receives and radiates energy. Earth shows an energy surplus in the tropics and a deficit in the polar regions, while Mars exhibits opposite behavioral patterns.

The surplus is evident in Mars’ southern hemisphere during spring, which plays a role in driving the planet’s atmospheric circulation and triggering the most prominent feature of weather on the planet, global dust storms. The storms can envelop the entire planet, alter the distribution of energy, and provide a dynamic element that affects Mars’ weather patterns and climate.

The research team is currently examining long-term energy imbalances on Mars and how it influences the planet’s climate.

“The REB difference between the two planets is truly fascinating, so continued monitoring will deepen our understanding of Mars’ climate dynamics,” Li says in a news release.

The global-scale energy imbalance on Earth was recently discovered, and it contributes to global warming at a “magnitude comparable to that caused by increasing greenhouse gases,” according to the study. Mars has an environment that differs due to its thinner atmosphere and lack of anthropogenic effects.

“The work in establishing Mars’ first meridional radiant energy budget profile is noteworthy,” Guan adds. “Understanding Earth’s large-scale climate and atmospheric circulation relies heavily on REB profiles, so having one for Mars allows critical climatological comparisons and lays the groundwork for Martian meteorology.”

These five Houston-based energy transition research news articles trended this year on EnergyCapital. Photo via Getty Images

Sustainable fuels, semiconductor tech, and more top research news from 2024

year in review

Editor's note: As the year comes to a close, EnergyCapital is looking back at the year's top stories in Houston energy transition. When it comes to the future of energy, Houston has tons of forward-thinking minds hard at work researching solutions to climate change and its impact on Earth. The following research-focused articles that stood out to readers this year — be sure to click through to read the full story.

University of Houston secures $3.6M from DOE program to fund sustainable fuel production

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release. Continue reading.

Rice University semiconductor researchers join DARPA-funded Texas team

Researchers from Rice University and the University of Texas have teamed up for semiconductor microsystem innovation. Photo courtesy of UT

A team led by the University of Texas at Austin and partnered with Rice University was awarded $840 million to develop “the next generation of high-performing semiconductor microsystems" for the U.S. Department of Defense.

The Defense Advanced Research Projects Agency (DARPA) selected UT’s Texas Institute for Electronics (TIE) semiconductor consortium to establish a national open access R&D and prototyping fabrication facility.

The facility hopes to enable the DOD to create higher performance, lower power, lightweight, and compact defense systems. The technology could apply to radar, satellite imaging, unmanned aerial vehicles, or other systems, and ultimately will assist with national security and global military leadership. As a member of DARPA’s Next Generation Microelectronics Manufacturing (NGMM) team, Rice’s contributions are key.

Executive vice president for research Ramamoorthy Ramesh and the Rice researchers will focus on technologies for improving computing efficiency. In a Rice press release, Ramesh notes the need to enhance “energy-efficient computing” which highlights Rice’s qualifications to contribute to the solution. Continue reading.

Houston lab develops reactor that sustainably turns waste into ammonia

Led by Haotian Wang (left) and Feng-Yang Chen, the Rice University team published a study this month detailing how its reactor system sustainably converts waste into ammonia. Photo by Jeff Fitlow/Rice University

A team of Rice University engineers has developed a reactor design that can decarbonize ammonia production, produce clean water and potentially have applications in further research into other eco-friendly chemical processes.

Led by Rice associate professor Haotian Wang, the team published a study this month in the journal Nature Catalysis that details how the new reactor system sustainably and efficiently converts nitrates (common pollutants found in industrial wastewater and agricultural runoff) into ammonia, according to the university. The research was supported by Rice and the National Science Foundation.

“Our findings suggest a new, greener method of addressing both water pollution and ammonia production, which could influence how industries and communities handle these challenges,” Wang says in a statement. “If we want to decarbonize the grid and reach net-zero goals by 2050, there is an urgent need to develop alternative ways to produce ammonia sustainably.” Continue reading.

Houston-area researchers score $1.5M grant to develop storm response tech platform

OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models to support storm response decision makers, has secured an NSF grant. Photo via Getty Images

Researchers from Rice University have secured a $1.5 million grant from the National Science Foundation to continue their work on improving safety and resiliency of coastal communities plagued by flooding and hazardous weather.

The Rice team of engineers and collaborators includes Jamie Padgett, Ben Hu, and Avantika Gori along with David Retchless at Texas A&M University at Galveston. The researchers are working in collaboration with the Severe Storm Prediction, Education and Evacuation from Disasters (SSPEED) Center and the Ken Kennedy Institute at Rice and A&M-Galveston’s Institute for a Disaster Resilient Texas.

Together, the team is developing and hopes to deploy “Open-Source Situational Awareness Framework for Equitable Multi-Hazard Impact Sensing using Responsible AI,” or OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models "to provide timely, reliable and equitable insights to emergency response organizations and communities before, during and after tropical cyclones and coastal storm events," reads a news release from Rice. Continue reading.

$360M DOE grant to fund project that will connect ERCOT to US power grid

For the first time, Texas's ERCOT grid will be connected to other states' grids thanks to funding from the Department of Energy. Photo via Getty Images

Thanks to recently announced funding, the power grid for the territory served by the Electric Reliability Council of Texas (ERCOT) will be connected to grids in other states.

Officials hope building a 320-mile transmission line that connects the ERCOT electric grid to electric grids in the Southeast will prevent power outages like the massive blackout that occurred in 2022 when a winter storm blasted Texas.

San Francisco-based Pattern Energy says its Southern Spirit project will cost more than $2.6 billion. Full-scale construction is supposed to get underway in 2028, and the project is set to go online in 2031. Continue reading.

ReVolt Battery Technology Corp. is based out of the University of Houston Innovation Center. Photo via revoltbatterytechnology.com

Houston SaaS startup on a mission of decarbonizing public transportation secures SBIR grant

seeing green

A Houston company that's electrifying public transportation secured a SBIR Phase 1 award from the Department of Transportation.

ReVolt Battery Technology Corp., software-as-a-service company based out of the University of Houston Innovation Center, received the award. The company did not disclose the monetary value of the funding, but indicated that the grant will support ReVolt's "research on reducing auxiliary power consumption in battery electric buses," according to a statement from the company.

"ReVolt stands out as one of only 23 small businesses across the United States to be selected in this highly competitive process, which focuses on creating innovative infrastructure for safe and secure transportation," reads the statement.

The company's software technology platform consists of charging infrastructure, electric vehicle scheduling, fleet digital twin, and greenhouse gas reduction and estimation.

The company was founded in 2021 by Jan Naidu and, according to Crunchbase, has raised $200,000 in pre-seed funding.

A Rice University team researching carbon nanotube synthesis has received $4.1 million funding from both Rice’s Carbon Hub and The Kavli Foundation. Photo by Gustavo Raskosky/Rice University

Houston-led research team granted $4.1M for carbon synthesis project, calls for collaboration

fresh funding

A Rice University-led team of scientists has been awarded a $4.1 million grant to optimize a synthesis process that could make carbon materials sustainable and affordable on a large scale.

Known as carbon nanotube (CNT) synthesis, the process has the ability to create hollow cylindrical nanoscale structures made from carbon atoms that are strong, lightweight and carry heat and electricity well. CNT synthesis evolved across multiple countries around the same time, according to Rice. But to scale up the process in a way that could create alternatives to materials dependent on heavy industry, Matteo Pasquali, the team's leader and the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, says collaboration will be required.

“We have to apply a collaborative mindset to solve this problem,” Pasquali says in a statement. “We believe that by bringing together a dedicated interdisciplinary community, this project will lead to improvements in reactor efficiency and help identify further gaps in instrumentation and modeling.”

The grant seeks to achieve that. The funds come from both Rice’s Carbon Hub, which contributed $2.2 million to the team, and The Kavli Foundation, which granted $1.9 million in the form of a Kavli Exploration Award in Nanoscience for Sustainability.

The Kavli Foundation supports research in astrophysics, nanoscience, neuroscience and theoretical physics. Winners of its Kavli Prize, which recognizes scientific breakthroughs, often go on to win the Nobel Prize.

“We are proud to partner with Rice University to support this important high-risk, high-reward research,” says Amy Bernard, director of life sciences at The Kavli Foundation, says in a statement.

Pasquali is the director and one of the creators of Rice's Carbon Hub, a collaborative group of corporations, researchers, universities and nonprofits focused on decarbonizing the economy. He says the grant will help the team develop tools to shed light on CNT formation and reaction zones.

“We are at a critical juncture in carbon research, and it is really important that we shed light on the physical and chemical processes that drive CNT synthesis,” Pasquali says. “Currently, reactors are black boxes, which prevents us from ramping up synthesis efficiency. We need to better understand the forces at play in CNT formation by developing new tools to shed light on the reaction zone and find ways to leverage it to our advantage.”

Boris Yakobson, the Karl F. Hasselmann Professor of Engineering and professor of materials science and nanoengineering at Rice, and Thomas Senftle, assistant professor of chemical and biomolecular engineering at Rice, are also involved in the project. Other collaborators hail from the UK, Italy, Korea, and Spain, as well as U.S. labs and universities, including Harvard, Stanford, MIT and others.

In October, a separate team of Rice researchers released a study on a new synthesis process with applications in developing commercially relevant solar cells.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH lands $8M in federal funding for fusion energy research

fusion funding

The University of Houston will receive $8 million in federal funding from the U.S. Department of Energy for its work on fusion technology to help power data centers and medical work.

Venkat Selvamanickam, professor at UH’s Cullen College of Mechanical and Aerospace Engineering and director of the Advanced Manufacturing Institute, has been tasked to lead the research on superconducting magnets that he said will make compact fusion reactors possible.

“Beyond fusion, superconductors can transform how we deliver power to data centers, enable highly efficient motors and generators and improve electric power devices,” Selvamanickam said in a news release. “They also enable critical applications such as MRI and proton beam therapy for cancer treatment. I want society to experience the broad benefits this remarkable technology can provide.”

UH is one of 23 institutions selected to share part of $134 million from the DOE’s Fusion Energy Sciences division. The total funding is split across two initiatives: $128 million for the Fusion Innovation Research Engine (FIRE) and $6.1 million for the Innovation Network for Fusion Energy program, according to the university.

UH will partner with the FIRE Collaborative for the research, which looks to understand why superconducting magnets in fusion reactors break down and work on developing solutions to make them more resilient.

“The advantage of fusion is it’s clean and it does not require storage. Solar energy can’t be used at night, and wind energy depends on wind conditions,” Selvamanickam added in the release. “Our goal is to make fusion a truly viable energy source.”

Energy expert on Houston's advantage: Building affordability and reliability for all

Guest Column

As the energy capital of the world, Houston has been at the forefront of innovation, powering industries and communities for generations. Many Houston families, however, are facing a reality that undermines our leadership: high energy bills and ongoing concerns about grid reliability.

Affordability and reliability are not just technical issues; they’re equity issues. To remain the world leader in energy, we must ensure that every household has access to affordable and dependable power.

Affordability: The First Step Toward Equity

According to the recent 2025 study by The Texas Energy Poverty Research Institute, nearly 80% of low- to moderate-income Houstonians scaled back on basic needs to cover electric bills. Rising costs mean some Houstonians are forced to choose between paying their utility bill or paying for groceries.

Additionally, Houston now has the highest poverty rate among America’s most populous cities. Energy should not be a privilege for only half of our city’s population. That’s why affordability needs to be at the center of Houston’s energy conversation.

Several practical solutions exist to help address this inequity:

  • We can increase transparency in electricity pricing and help families better understand their electricity facts labels to make smarter choices.
  • We can expand energy efficiency programs, like weatherizing homes and apartments, swapping out old light bulbs for LEDs, and adopting smart thermostats.
  • Incentives to help families invest in these changes can deliver long-term benefits for both them and apartment complex owners.

Many small changes, when combined, can add up to significant savings for families while reducing overall demand on the grid.

Reliability: A Shared Community Priority

The memories of Hurricane Beryl, Derecho, and Winter Storm Uri are still fresh in the minds of Texans. We saw firsthand the fragility of our grid and how devastating outages are to families, especially those without resources to handle extreme weather. Reliability of the grid is an issue of public health, economic stability, and community safety.

Houston has an opportunity to lead by embracing innovation. Grid modernization, from deploying microgrids to expanding battery storage, can provide stability when the system is under stress. Partnerships between utilities, businesses, and community organizations are key to building resilience. With Houston’s innovation ecosystem, we can pilot solutions here that other regions will look to replicate.

Energy Equity in Action

Reliable, affordable energy strengthens equity in tangible ways. When households spend less on utilities, they have more to invest in their children’s education or save for the future. When power is stable, schools remain open, businesses continue to operate, and communities thrive. Extending energy efficiency programs across all neighborhoods creates a fairer, more balanced system, breaking down inequities tied to income and geography.

Studies show that expanding urban green spaces such as community gardens and tree-planting programs can lower neighborhood temperatures, reduce energy use for cooling, and improve air quality in disadvantaged areas, directly reducing household utility burdens.

In Houston, for example, the median energy burden for low-income households is 7.1% of income, more than twice that of the general population, with over 20% of households having energy burdens above 6%.

Research also demonstrates that community solar programs and urban cooling investments deliver clean, affordable power, helping to mitigate heat stress and making them high-impact strategies for energy equity and climate resilience in vulnerable neighborhoods.

Public-Private Partnerships Make the Difference

The solutions to affordability and reliability challenges must come from cross-sector collaboration. For example, CenterPoint Energy offers incentives through its Residential and Hard-to-Reach Programs, which support contractors and community agencies in delivering energy efficiency upgrades, including weatherization, to low-income households in the greater Houston area.

Nonprofits like the Houston Advanced Research Center (HARC) received a $1.9 million Department of Energy grant to lead a weatherization program tailored for underserved communities in Harris County, helping to lower bills and improve housing safety

Meanwhile, the City of Houston’s Green Office Challenge and Better Buildings Initiative bring private-sector sponsors, nonprofits, and city leadership together to drive energy reductions across millions of square feet of commercial buildings, backed by training and financial incentives. Together, these partnerships can result in real impact that brings more equity and access to affordable energy.

BKV Energy is committed to being part of the solution by promoting practical, consumer-focused strategies that help families save money and use energy more efficiently. We offer a suite of programs designed to provide customers with financial benefits and alleviate the burden of rising electricity bills. Programs like BKV Energy’s demonstrate how utilities can ease financial strain for families while building stronger customer loyalty and trust. Expanding similar initiatives across Houston would not only lower household energy burdens but also set a new standard for how energy companies can invest directly in their communities.

By proactively addressing affordability, energy companies can help ensure that rising costs don’t disproportionately impact vulnerable households. These efforts also contribute to a more resilient and equitable energy future for Houston, where all residents can access reliable power without sacrificing financial stability.

Houston as a Blueprint

Houston has always been a city of leadership and innovation, whether pioneering the space race, driving advancements in medical research at the Texas Medical Center, or anchoring the global energy industry. Today, our challenge is just as urgent: affordability and reliability must become the cornerstones of our energy future. Houston has the expertise and the collaborative spirit to show how it can be done.

By scaling innovative solutions, Houston can make energy more equitable, strengthening our own community while setting a blueprint for the nation. As the energy capital of the world, it is both our responsibility and our opportunity to lead the way to a more equitable future for all.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

Energy startup Base Power raises $1 billion series C round

fresh funding

Austin-based startup Base Power, which offers battery-supported energy in the Houston area and other regions, has raised $1 billion in series C funding—making it one of the largest venture capital deals this year in the U.S.

VC firm Addition led the $1 billion round. All of Base Power’s existing major investors also participated, including Trust Ventures, Valor Equity Partners, Thrive Capital, Lightspeed Venture Partners, Andreessen Horowitz (a16z), Altimeter, StepStone Group, 137 Ventures, Terrain, Waybury Capital, and entrepreneur Elad Gil. New investors include Ribbit Capital, Google-backed CapitalG, Spark Capital, Bond, Lowercarbon Capital, Avenir Growth Capital, Glade Brook Capital Partners, Positive Sum and 1789 Capital Management.

Coupled with the new $1 billion round, Base Power has hauled in more than $1.27 billion in funding since it was founded in 2023.

Base Power supplies power to homeowners and the electric grid through a distributed storage network.

“The chance to reinvent our power system comes once in a generation,” Zach Dell, co-founder and CEO of Base Power, said in a news release. “The challenge ahead requires the best engineers and operators to solve it, and we’re scaling the team to make our abundant energy future a reality.”

Zach Dell is the son of Austin billionaire and Houston native Michael Dell, chairman and CEO of Round Rock-based Dell Technologies.

In less than two years, Base Power has developed more than 100 megawatt-hours of battery-enabled storage capacity. One megawatt-hour represents one hour of energy use at a rate of one million watts.

Base Power recently expanded its service to the city of Houston. It already was delivering energy to several other communities in the Houston area. To serve the Houston region, the startup has opened an office in Katy.

The startup also serves the Dallas-Fort Worth and Austin markets. At some point, Base Power plans to launch a nationwide expansion.

To meet current and future demand, Base Power is building its first energy storage and power electronics factory at the former downtown Austin site of the Austin American-Statesman’s printing presses.

“We’re building domestic manufacturing capacity for fixing the grid,” Justin Lopas, co-founder and chief operating officer of Base Power, added in the release. “The only way to add capacity to the grid is [by] physically deploying hardware, and we need to make that here in the U.S. ... This factory in Austin is our first, and we’re already planning for our second.”