A team of Rice researchers, including Caroline Ajo-Franklin and Biki Bapi Kundu, has uncovered how certain bacteria breathe by generating electricity. Photo by Jeff Fitlow/Rice University.

New research from Rice University that merges biology with electrochemistry has uncovered new findings on how some bacteria generate electricity.

Led by Caroline Ajo-Franklin, a Rice professor of biosciences and the director of the Rice Synthetic Biology Institute, the team published its findings in the journal Cell in April. The report showed how some bacteria use compounds called naphthoquinones, rather than oxygen, to transfer electrons to external surfaces in a process known as extracellular respiration. In other words, the bacteria are exhale electricity as they breathe.

This process has been observed by scientists for years, but the Rice team's deeper understanding of its mechanism is a major breakthrough, with implications for the clean energy and industrial biotechnology sectors, according to the university.

“Our research not only solves a long-standing scientific mystery, but it also points to a new and potentially widespread survival strategy in nature,” Ajo-Franklin, said in a news release.

The Rice team worked with the University of California, San Diego's Palsson lab to simulate bacterial growth using advanced computer modeling. The simulations modeled oxygen-deprived environments that were rich in conductive surfaces, and found that bacteria could sustain themselves without oxygen. Next, they confirmed that the bacteria continued to grow and generate electricity when placed on conductive materials.

The team reports that the findings "lay the groundwork for future technologies that harness the unique capabilities" of these bacteria with "far-reaching practical implications." The team says the findings could lead to significant improvements in wastewater treatment and biomanufacturing. They could also allow for better bioelectronic sensors in oxygen-deprived environments, including deep-sea vents, the human gut and in deep space.

“Our work lays the foundation for harnessing carbon dioxide through renewable electricity, where bacteria function similarly to plants with sunlight in photosynthesis,” Ajo-Franklin added in the release. “It opens the door to building smarter, more sustainable technologies with biology at the core.”

Rice University's Menachem Elimelech and Yuanmiaoliang “Selina” Chen published a study in Nature Water on mimicking dialysis from the medical field to treat wastewater. Photo by Gustavo Raskosky/Rice University

Houston researchers harness dialysis for new wastewater treatment process

waste not

By employing medical field technology dialysis, researchers at Rice University and the Guangdong University of Technology in China uncovered a new way to treat high-salinity organic wastewater.

In the medical field, dialysis uses a machine called a dialyzer to filter waste and excess fluid from the blood. In a study published in Nature Water, Rice’s team found that mimicking dialysis can separate salts from organic substances with minimal dilution of the wastewater, addressing some of the limitations of previous methods.

The researchers say this has the potential to lower costs, recover valuable resources across a range of industrial sectors and reduce environmental impacts.

“Traditional methods often demand a lot of energy and require repeated dilutions,” Yuanmiaoliang “Selina” Chen, a co-first author and postdoctoral associate in Elimelech’s lab at Rice, said in a news release. “Dialysis eliminates many of these pain points, reducing water consumption and operational overheads.”

Various industries generate high-salinity organic wastewater, including petrochemical, pharmaceutical and textile manufacturing. The wastewater’s high salt and organic content can present challenges for existing treatment processes. Biological and advanced oxidation treatments become less effective with higher salinity levels. Thermal methods are considered “energy intensive” and susceptible to corrosion.

Ultimately, the researchers found that dialysis effectively removed salt from water without requiring large amounts of fresh water. This process allows salts to move into the dialysate stream while keeping most organic compounds in the original solution. Because dialysis relies on diffusion instead of pressure, salts and organics cross the membrane at different speeds, making the separation method more efficient.

“Dialysis was astonishingly effective in separating the salts from the organics in our trials,” Menachem Elimelech, a corresponding author on the study and professor of civil and environmental engineering and chemical and biomolecular engineering at Rice, said in a news release. “It’s an exciting discovery with the potential to redefine how we handle some of our most intractable wastewater challenges.”

A new study on Mars is shining a light on the Earth's own climate mysteries. Image via UH.edu

Houston scientists create first profile of Mars’ radiant energy budget, revealing climate insights on Earth

research findings

Scientists at the University of Houston have found a new understanding of climate and weather on Mars.

The study, which was published in a new paper in AGU Advances and will be featured in AGU’s science magazine EOS, generated the first meridional profile of Mars’ radiant energy budget (REB). REB represents the balance or imbalance between absorbed solar energy and emitted thermal energy across latitudes. An energy surplus can lead to global warming, and a deficit results in global cooling, which helps provide insights to Earth's atmospheric processes too. The profile of Mars’ REB influences weather and climate patterns.

The study was led by Larry Guan, a graduate student in the Department of Physics at UH's College of Natural Sciences and Mathematics under the guidance of his advisors Professor Liming Li from the Department of Physics and Professor Xun Jiang from the Department of Earth and Atmospheric Sciences and other planetary scientists. UH graduate students Ellen Creecy and Xinyue Wang, renowned planetary scientists Germán Martínez, Ph.D. (Houston’s Lunar and Planetary Institute), Anthony Toigo, Ph.D. (Johns Hopkins University) and Mark Richardson, Ph.D. (Aeolis Research), and Prof. Agustín Sánchez-Lavega (Universidad del País, Vasco, Spain) and Prof. Yeon Joo Lee (Institute for Basic Science, South Korea) also assisted in the project.

The profile of Mars’ REB is based on long-term observations from orbiting spacecraft. It offers a detailed comparison of Mars’ REB to that of Earth, which has shown differences in the way each planet receives and radiates energy. Earth shows an energy surplus in the tropics and a deficit in the polar regions, while Mars exhibits opposite behavioral patterns.

The surplus is evident in Mars’ southern hemisphere during spring, which plays a role in driving the planet’s atmospheric circulation and triggering the most prominent feature of weather on the planet, global dust storms. The storms can envelop the entire planet, alter the distribution of energy, and provide a dynamic element that affects Mars’ weather patterns and climate.

The research team is currently examining long-term energy imbalances on Mars and how it influences the planet’s climate.

“The REB difference between the two planets is truly fascinating, so continued monitoring will deepen our understanding of Mars’ climate dynamics,” Li says in a news release.

The global-scale energy imbalance on Earth was recently discovered, and it contributes to global warming at a “magnitude comparable to that caused by increasing greenhouse gases,” according to the study. Mars has an environment that differs due to its thinner atmosphere and lack of anthropogenic effects.

“The work in establishing Mars’ first meridional radiant energy budget profile is noteworthy,” Guan adds. “Understanding Earth’s large-scale climate and atmospheric circulation relies heavily on REB profiles, so having one for Mars allows critical climatological comparisons and lays the groundwork for Martian meteorology.”

These five Houston-based energy transition research news articles trended this year on EnergyCapital. Photo via Getty Images

Sustainable fuels, semiconductor tech, and more top research news from 2024

year in review

Editor's note: As the year comes to a close, EnergyCapital is looking back at the year's top stories in Houston energy transition. When it comes to the future of energy, Houston has tons of forward-thinking minds hard at work researching solutions to climate change and its impact on Earth. The following research-focused articles that stood out to readers this year — be sure to click through to read the full story.

University of Houston secures $3.6M from DOE program to fund sustainable fuel production

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release. Continue reading.

Rice University semiconductor researchers join DARPA-funded Texas team

Researchers from Rice University and the University of Texas have teamed up for semiconductor microsystem innovation. Photo courtesy of UT

A team led by the University of Texas at Austin and partnered with Rice University was awarded $840 million to develop “the next generation of high-performing semiconductor microsystems" for the U.S. Department of Defense.

The Defense Advanced Research Projects Agency (DARPA) selected UT’s Texas Institute for Electronics (TIE) semiconductor consortium to establish a national open access R&D and prototyping fabrication facility.

The facility hopes to enable the DOD to create higher performance, lower power, lightweight, and compact defense systems. The technology could apply to radar, satellite imaging, unmanned aerial vehicles, or other systems, and ultimately will assist with national security and global military leadership. As a member of DARPA’s Next Generation Microelectronics Manufacturing (NGMM) team, Rice’s contributions are key.

Executive vice president for research Ramamoorthy Ramesh and the Rice researchers will focus on technologies for improving computing efficiency. In a Rice press release, Ramesh notes the need to enhance “energy-efficient computing” which highlights Rice’s qualifications to contribute to the solution. Continue reading.

Houston lab develops reactor that sustainably turns waste into ammonia

Led by Haotian Wang (left) and Feng-Yang Chen, the Rice University team published a study this month detailing how its reactor system sustainably converts waste into ammonia. Photo by Jeff Fitlow/Rice University

A team of Rice University engineers has developed a reactor design that can decarbonize ammonia production, produce clean water and potentially have applications in further research into other eco-friendly chemical processes.

Led by Rice associate professor Haotian Wang, the team published a study this month in the journal Nature Catalysis that details how the new reactor system sustainably and efficiently converts nitrates (common pollutants found in industrial wastewater and agricultural runoff) into ammonia, according to the university. The research was supported by Rice and the National Science Foundation.

“Our findings suggest a new, greener method of addressing both water pollution and ammonia production, which could influence how industries and communities handle these challenges,” Wang says in a statement. “If we want to decarbonize the grid and reach net-zero goals by 2050, there is an urgent need to develop alternative ways to produce ammonia sustainably.” Continue reading.

Houston-area researchers score $1.5M grant to develop storm response tech platform

OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models to support storm response decision makers, has secured an NSF grant. Photo via Getty Images

Researchers from Rice University have secured a $1.5 million grant from the National Science Foundation to continue their work on improving safety and resiliency of coastal communities plagued by flooding and hazardous weather.

The Rice team of engineers and collaborators includes Jamie Padgett, Ben Hu, and Avantika Gori along with David Retchless at Texas A&M University at Galveston. The researchers are working in collaboration with the Severe Storm Prediction, Education and Evacuation from Disasters (SSPEED) Center and the Ken Kennedy Institute at Rice and A&M-Galveston’s Institute for a Disaster Resilient Texas.

Together, the team is developing and hopes to deploy “Open-Source Situational Awareness Framework for Equitable Multi-Hazard Impact Sensing using Responsible AI,” or OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models "to provide timely, reliable and equitable insights to emergency response organizations and communities before, during and after tropical cyclones and coastal storm events," reads a news release from Rice. Continue reading.

$360M DOE grant to fund project that will connect ERCOT to US power grid

For the first time, Texas's ERCOT grid will be connected to other states' grids thanks to funding from the Department of Energy. Photo via Getty Images

Thanks to recently announced funding, the power grid for the territory served by the Electric Reliability Council of Texas (ERCOT) will be connected to grids in other states.

Officials hope building a 320-mile transmission line that connects the ERCOT electric grid to electric grids in the Southeast will prevent power outages like the massive blackout that occurred in 2022 when a winter storm blasted Texas.

San Francisco-based Pattern Energy says its Southern Spirit project will cost more than $2.6 billion. Full-scale construction is supposed to get underway in 2028, and the project is set to go online in 2031. Continue reading.

ReVolt Battery Technology Corp. is based out of the University of Houston Innovation Center. Photo via revoltbatterytechnology.com

Houston SaaS startup on a mission of decarbonizing public transportation secures SBIR grant

seeing green

A Houston company that's electrifying public transportation secured a SBIR Phase 1 award from the Department of Transportation.

ReVolt Battery Technology Corp., software-as-a-service company based out of the University of Houston Innovation Center, received the award. The company did not disclose the monetary value of the funding, but indicated that the grant will support ReVolt's "research on reducing auxiliary power consumption in battery electric buses," according to a statement from the company.

"ReVolt stands out as one of only 23 small businesses across the United States to be selected in this highly competitive process, which focuses on creating innovative infrastructure for safe and secure transportation," reads the statement.

The company's software technology platform consists of charging infrastructure, electric vehicle scheduling, fleet digital twin, and greenhouse gas reduction and estimation.

The company was founded in 2021 by Jan Naidu and, according to Crunchbase, has raised $200,000 in pre-seed funding.

A Rice University team researching carbon nanotube synthesis has received $4.1 million funding from both Rice’s Carbon Hub and The Kavli Foundation. Photo by Gustavo Raskosky/Rice University

Houston-led research team granted $4.1M for carbon synthesis project, calls for collaboration

fresh funding

A Rice University-led team of scientists has been awarded a $4.1 million grant to optimize a synthesis process that could make carbon materials sustainable and affordable on a large scale.

Known as carbon nanotube (CNT) synthesis, the process has the ability to create hollow cylindrical nanoscale structures made from carbon atoms that are strong, lightweight and carry heat and electricity well. CNT synthesis evolved across multiple countries around the same time, according to Rice. But to scale up the process in a way that could create alternatives to materials dependent on heavy industry, Matteo Pasquali, the team's leader and the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, says collaboration will be required.

“We have to apply a collaborative mindset to solve this problem,” Pasquali says in a statement. “We believe that by bringing together a dedicated interdisciplinary community, this project will lead to improvements in reactor efficiency and help identify further gaps in instrumentation and modeling.”

The grant seeks to achieve that. The funds come from both Rice’s Carbon Hub, which contributed $2.2 million to the team, and The Kavli Foundation, which granted $1.9 million in the form of a Kavli Exploration Award in Nanoscience for Sustainability.

The Kavli Foundation supports research in astrophysics, nanoscience, neuroscience and theoretical physics. Winners of its Kavli Prize, which recognizes scientific breakthroughs, often go on to win the Nobel Prize.

“We are proud to partner with Rice University to support this important high-risk, high-reward research,” says Amy Bernard, director of life sciences at The Kavli Foundation, says in a statement.

Pasquali is the director and one of the creators of Rice's Carbon Hub, a collaborative group of corporations, researchers, universities and nonprofits focused on decarbonizing the economy. He says the grant will help the team develop tools to shed light on CNT formation and reaction zones.

“We are at a critical juncture in carbon research, and it is really important that we shed light on the physical and chemical processes that drive CNT synthesis,” Pasquali says. “Currently, reactors are black boxes, which prevents us from ramping up synthesis efficiency. We need to better understand the forces at play in CNT formation by developing new tools to shed light on the reaction zone and find ways to leverage it to our advantage.”

Boris Yakobson, the Karl F. Hasselmann Professor of Engineering and professor of materials science and nanoengineering at Rice, and Thomas Senftle, assistant professor of chemical and biomolecular engineering at Rice, are also involved in the project. Other collaborators hail from the UK, Italy, Korea, and Spain, as well as U.S. labs and universities, including Harvard, Stanford, MIT and others.

In October, a separate team of Rice researchers released a study on a new synthesis process with applications in developing commercially relevant solar cells.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

7 Houston energy-focused businesses among Time's best midsize companies 2025

new report

Seven Houston-based businesses focused on the energy industry appear on Time magazine and Statista’s new ranking of the country’s best midsize companies.

Time and Statista ranked companies based on employee satisfaction, revenue growth, and transparency about sustainability. All 500 companies on the list have annual revenue from $100 million to $10 billion.

The Houston energy-focused companies on the list are:

  • No. 141 MRC Global. Score: 85.84
  • No. 176 National Oilwell Varco. Score: 84.50
  • No. 266 Nabor Industries. Score: 81.59
  • No. 296 Archrock. Score: 80.17
  • No. 327 Superior Energy Services. Score: 79.38
  • No. 359 CenterPoint Energy. Score: 78.02
  • No. 461 Oceaneering. Score: 73.87
In total, 13 Houston-based businesses appear, with Houston engineering firm KBR topping the Texas businesses that made the list. KBR earned the No. 30 spot, earning a score of 91.53 out of 100. It is joined by these other Houston companies:
     
  • No. 168 Comfort Systems USA. Score: 84.72
  • No. 175 Crown Castle. Score: 84.51
  • No. 234 Kirby. Score: 82.48
  • No. 332 Insperity. Score: 79.15
  • No. 485 Skyward Specialty Insurance. Score: 73.15

Additional Texas companies on the list include:

  • No. 95 Austin-based Natera. Score: 87.26
  • No. 199 Plano-based Tyler Technologies. Score: 86.49
  • No. 139 McKinney-based Globe Life. Score: 85.88
  • No. 140 Dallas-based Trinity Industries. Score: 85.87
  • No. 149 Southlake-based Sabre. Score: 85.58
  • No. 223 Dallas-based Brinker International. Score: 82.87
  • No. 226 Irving-based Darling Ingredients. Score: 82.86
  • No. 256 Dallas-based Copart. Score: 81.78
  • No. 276 Coppell-based Brink’s. Score: 80.90
  • No. 279 Dallas-based Topgolf. Score: 80.79
  • No. 294 Richardson-based Lennox. Score: 80.22
  • No. 308 Dallas-based Primoris Services. Score: 79.96
  • No. 322 Dallas-based Wingstop Restaurants. Score: 79.49
  • No. 335 Fort Worth-based Omnicell. Score: 78.95
  • No. 337 Plano-based Cinemark. Score: 78.91
  • No. 345 Dallas-based Dave & Buster’s. Score: 78.64
  • No. 349 Dallas-based ATI. Score: 78.44
  • No. 385 Frisco-based Addus HomeCare. Score: 76.86
  • No. 414 New Braunfels-based Rush Enterprises. Score: 75.75
  • No. 431 Dallas-based Comerica Bank. Score: 75.20
  • No. 439 Austin-based Q2 Software. Score: 74.85
  • No. 458 San Antonio-based Frost Bank. Score: 73.94
  • No. 475 Fort Worth-based FirstCash. Score: 73.39
  • No. 498 Irving-based Nexstar Broadcasting Group. Score: 72.71
---
This article originally appeared on our sister site, InnovationMap.

TEX-E names Houston VC leader as new executive director

new hire

The Texas Exchange for Energy & Climate Entrepreneurship (TEX-E) has named Houston venture capital and innovation leader Sandy Guitar as its new executive director.

Guitar succeeds David Pruner, who will move into the board chair role.

Guitar previously served as general partner and managing director at Houston-based VC firm HX Venture Fund and is co-founder of Weathergage Capital. She also sits on the advisory board of Rice University's Liu Idea Lab for Innovation and Entrepreneurship (Lilie) and launched the Women Investing in VC in Houston group.

In a LinkedIn post, Guitar shared that she's looking forward to bringing her problem-solving skills to the energy transition.

"Innovating in the energy sector is as significant and intricate a problem as I have ever worked on — one that demands creativity, collaboration, and resourcefulness at every turn," she shared.

"I'm honored to join TEX-E at such a pivotal time in the energy transition," she added in a news release. "Energy and climate innovation is accelerating at the intersection of brilliant minds and bold ideas. I'm excited to help TEX-E amplify that collision between students who think differently and the real-world problems that demand fresh solutions."

According to TEX-E, Guitar will continue to lead the organization's programming that aims to connect student climate entrepreneurs with "industry reality."

"Sandy understands the complexities of the Texas energy ecosystem and brings a forward-looking vision for how related innovation can drive meaningful, lasting impact. She's exactly the leader we need to take TEX-E to the next level and help create the next generation of energy transition innovators," David Baldwin, TEX-E board member, added in the release.

TEX-E was founded in 2022 through partnerships with MIT Martin Trust Center for Entrepreneurship and Greentown Labs. It works with university students from six schools: Rice University, University of Houston, Prairie View A&M University, The University of Texas at Austin, Texas A&M University and MIT.

It's known for its student track within the Energy Venture Day and Pitch Competition at CERAWeek, which awarded $25,000 to HEXASpec, a Rice University-led team, at the 2025 event. It also hosted its inaugural TEX-E Conference, centered on the theme of Energy & Entrepreneurship: Navigating the Future of Climate Tech, earlier this year.

Expert: Debunking the myth that Texas doesn't care about renewable energy

Guest Column

When most people think about Texas, wind turbines and solar panels may not be the first images that come to mind. But in reality, the state now leads the nation in both wind-powered electricity generation and utility-scale solar capacity. In 2024 alone, Texas added approximately 9,700 megawatts of solar and 4,374 megawatts of battery storage, outpacing all other energy sources in new generation capacity that year. So what’s driving Texas’ rapid rise as the renewable energy capital of the United States?

Leader in wind energy

Texas has been a national leader in wind energy for more than a decade, thanks to its vast open landscapes and consistent wind conditions, particularly in regions like West Texas and the Panhandle. These ideal geographic features have enabled the development of massive wind farms, giving Texas the largest installed wind capacity in the United States. Wind energy also plays a strategic role in balancing the grid and complements solar energy well, as it often peaks at night when solar output drops.

Battery storage growth

Increasing battery storage capacity is unlocking more potential from solar and wind. When intermittent energy sources like wind and solar go offline, batteries release stored electricity and provide stability to the Electric Reliability Council of Texas system. Excluding California, Texas has more battery storage than the rest of the United States combined, accounting for over 32% of all the capacity installed nationwide.

Solar electricity generation and utility-scale batteries within ERCOT power grid set records in summer 2024. Between June 1 and August 31, solar contributed nearly 25% of total power demand during mid-day hours. In the evening, as demand stayed high but solar output declined, battery discharges successfully filled the gap. Battery storage solutions are now a core element of ERCOT’s future capacity and demand planning.

Interest in creating a hydrogen economy

Texas is well positioned to become a national hub in the hydrogen economy. The state has everything needed to lead in this emerging space with low-cost natural gas, abundant and growing low carbon electricity, geology well suited for hydrogen and carbon storage, mature hydrogen demand centers, existing hydrogen pipelines, established port infrastructure and more. The state already has an existing hydrogen market with two-thirds of the country’s hydrogen transport infrastructure.

In 2023, the Texas Legislature created the Texas Hydrogen Production Policy Council, which found that:

  • Hydrogen could represent a grid-scale energy storage solution that can help support the increased development of renewable electricity from wind and solar. Renewable electricity that is converted to hydrogen can improve overall grid reliability, resilience and dispatchability.
  • The development of the hydrogen industry, along with its supporting infrastructure and its downstream markets within Texas, could attract billions of dollars of investment. This development may create hundreds of thousands of jobs - especially with younger generations who are passionate about climate science - and greatly boost the Texas economy.
  • Hydrogen supports the current energy economy in Texas as a critical component to both conventional refining and the growing production of new biofuels (such as renewable diesel and sustainable aviation fuel) within the state.

Legislative action and pressure to reduce carbon emissions

Texas has also seen key legislative actions and policies that have supported the growth of renewable energy in Texas. During the most recent legislative session, lawmakers decided that The Texas Energy Fund, a low-interest loan program aimed at encouraging companies to build more power infrastructure, will receive an additional $5 billion on top of the $5 billion lawmakers approved in 2023. Of that amount, $1.8 billion is earmarked to strengthen existing backup generators, which must be powered by a combination of solar, battery storage and natural gas. These funds signal growing institutional support for a diversified and more resilient energy grid.

Furthermore, there is growing pressure from investors, regulators and consumers to reduce carbon emissions, and as a result, private equity firms in the oil and gas sector are diversifying their portfolios to include wind, solar, battery storage and carbon capture projects. In 2022, private equity investment in renewable energy and clean technology surged to a record-high $26 billion.

The future of the renewable energy workforce

With renewable energy jobs projected to grow to 38 million globally by 2030, the sector is poised to be one of the most promising career landscapes of the future. Given that young people today are increasingly environmentally conscious, there is a powerful opportunity to engage students early and help them see how their values align with meaningful, purpose-driven careers in clean energy. Organizations like the Energy Education Foundation play a vital role in this effort by providing accessible, high-quality resources that bridge the gap between energy literacy and real-world impact. The nonprofit employs comprehensive, science-based educational initiatives to help students and educators explore complex energy topics through clear explanations and engaging learning tools, laying a strong foundation for informed, future-ready learners.

STEM and AI education, which are reshaping how young people think, build, and solve problems, provide a natural gateway into the renewable energy field. From robotics and coding to climate modeling and sustainable engineering, these learning experiences equip students with the critical skills and mindsets needed to thrive in a rapidly evolving energy economy. By investing in engaging, future-focused learning environments now and through leveraging trusted educational partners, like the Energy Education Foundation, we can help ensure that the next generation of learners are not just prepared to enter the clean energy workforce but are empowered to lead it.

With its rapidly growing wind, solar, battery and hydrogen sectors, Texas is redefining its energy identity. To sustain this momentum, the state must continue aligning education, policy, and innovation—not only to meet the energy demands of tomorrow, but to inspire and equip the next generation to lead the way toward a more sustainable, resilient and inclusive energy future.

---

Kristen Barley is the executive director of the Energy Education Foundation, a nonprofit dedicated to inspiring the next generation of energy leaders by providing comprehensive, engaging education that spans the entire energy spectrum.