new findings

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News

A View From HETI

A recent testimony before a U.S. Senate committee shows how solar power and battery storage are helping keep Texas electricity prices more stable, even as demand surges.Photo via SEIA.org.

Solar power and battery storage are saving Texans hundreds of millions of dollars on their electric bills, the president and CEO of the Solar Energy Industries Association recently told a congressional committee.

Abigail Ross Hopper, the association’s president and CEO, said in testimony given to the U.S. Senate Environment and Public Works Committee that states like Texas that are adding significant capacity for solar power and battery storage are enjoying lower, more stable prices for electricity.

“Unsubsidized solar is now the cheapest source of electricity in history in much of the country,” Hopper said. “With no fuel costs, solar provides a hedge against natural gas price volatility that continues to cause electricity price spikes.”

“The only way to put downward pressure on prices is by bringing more power online, not less,” she added.

To illustrate the value of solar power and battery storage, Hopper compared two hot summer days in Texas—one in July 2022 and the other in July 2025.

Hopper explained that the Electric Reliability Council of Texas (ERCOT) had begun installing solar on its grid in 2022 but had very little battery storage. ERCOT manages 90 percent of the state’s electrical load.

When ERCOT grid conditions buckled under high demand on the highlighted day in 2022, the price of electricity spiked to nearly $1,500 per megawatt-hour, Hopper said.

“Three years later, the amount of solar had increased substantially and was complemented by energy storage,” she said.

On the specified day in 2025, under even greater demand than three years earlier, sizable amounts of solar power, battery storage and wind power kept ERCOT’s midday price of electricity low and stable—around $50 per megawatt-hour. That dollar amount represented a nearly 100 percent decrease compared with the highlighted day in 2022.

Solar and wind supplied nearly 40 percent of Texas’ power during the first nine months of 2025, according to the U.S. Energy Information Administration (EIA).

Despite the state’s expansion of solar power and battery storage capacity, residential electricity prices in ERCOT’s territory rose 30 percent from 2020 to 2025 and are expected to climb another 29 percent from 2025 to 2030, according to a forecast from the Texas Energy Poverty Research Institute.

The increase in electric bills is tied to factors such as:

  • Higher natural gas prices
  • Greater demand from AI data centers and cryptomining facilities
  • Extreme weather
  • Population growth
  • Development of new transmission and distribution lines

The strain on ERCOT’s grid is only getting worse. An EIA forecast predicts demand for ERCOT electricity will jump 9.6 percent in 2026, and ERCOT expects a 50 percent jump in demand by 2029.

Trending News