keep it clean

Houston researchers reach 'surprising' revelation in materials recycling efforts

A team led by Matteo Pasquali, director of Rice’s Carbon Hub, has unveiled how carbon nanotube fibers can be a sustainable alternative to materials like steel, copper and aluminum. Photo by Jeff Fitlow/ Courtesy Rice University

Researchers at Rice University have published a study in the journal Carbon that demonstrates how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties.

The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.

“Recycling has long been a challenge in the materials industry — metals recycling is often inefficient and energy intensive, polymers tend to lose their properties after reprocessing and carbon fibers cannot be recycled at all, only downcycled by chopping them up into short pieces,” corresponding author Matteo Pasquali, director of Rice’s Carbon Hub and the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering and Chemistry, explained in a news release. “As CNT fibers are being scaled up, we asked whether and how these new materials could be recycled in the future .... We expected that recycling would be difficult and would lead to significant loss of properties. Surprisingly, we found that carbon nanotube fibers far exceed the recyclability potential of existing engineered materials, offering a solution to a major environmental issue.”

Rice researchers used a solution-spun CNT fiber that was created by dissolving fiber-grade commercial CNTs in chlorosulfonic acid, according to Rice. Mixing the two fibers led to complete redissolution and no sign of separation of the two source materials into different liquid phases. This redissolved material was spun into a mixed-source recycled fiber that retained the same structure and alignment, which was unprecedented.

Pasquali explained in a video release that the new material has properties that overlap with and could be a replacement for carbon fibers, kevlar, steel, copper and aluminum.

“This preservation of quality means CNT fibers can be used and reused in demanding applications without compromising performance, thus extending their lifecycle and reducing the need for new raw materials,” co-first author Ivan R. Siqueira, a recent doctoral graduate in Rice’s Department of Chemical and Biomolecular Engineering, said in a news release.

Other co-authors of the paper are Rice graduate alumni Oliver Dewey, now of DexMat; Steven Williams; Cedric Ginestra, now of LyondellBasell; Yingru Song, now a postdoctoral fellow at Purdue University; Rice undergraduate alumnus Juan De La Garza, now of Axiom Space; and Geoff Wehmeyer, assistant professor of mechanical engineering.

The research is part of the broader program of the Rice-led Carbon Hub, an initiative to develop a zero-emissions future. The work was also supported by the Department of Energy’s Advanced Research Project Agency, the Air Force Office of Scientific Research and a number of other organizations.

Pasquali recently led another team of Rice researchers to land a $4.1 million grant to optimize CNT synthesis. The funds came from Rice’s Carbon Hub and The Kavli Foundation. Read more here.

.

.

.

Trending News

A View From HETI

On.Energy's new Texas battery storage portfolio will triple the company’s installed and in-construction asset base in the U.S. Photo via On.Energy

Energy storage developer On.Energy announced it closed $77.6 million in construction credit facilities provided by Pathward N.A. and BridgePeak Energy Capital to build its 160 Megawatt-hour Palo de Agua battery storage portfolio across the state of Texas.

The new financing will allow the Miami-based company with project development offices in Houston to continue its expansion, which already includes 80 MWh of operational assets in Houston.

“In less than 12 months, we have managed to structure project finance credit solutions for more than 240 MWh, deploying critical infrastructure to one of the country’s most volatile power markets,” On.Energy CEO Alan Cooper said in a news release.

Cooper added that the Texas project triples the company’s installed and in-construction asset base in the U.S.

On.Energy uses its proprietary On.Command energy management system to implement customized, AI-driven solutions that support grid-scale projects and peak-shaving solutions that use energy storage to reduce electricity demand during peak hours.

By 2028, the company aims to have more than 2 GWh of battery energy storage scheduled for activation across California, Texas and Mexico.

“As Texas continues its prolific energy transition, On.Energy is providing the solutions to ensure grid reliance and resilience,” Christopher Soupal, Pathward divisional president and revenue lending officer, said in a news release.

“Pathward’s multi-project construction facility with On.Energy is another example of our commitment to the U.S. renewable energy sector, and we are proud to be their lending partner.”

Trending News