waste not

Houston researchers harness dialysis for new wastewater treatment process

Rice University's Menachem Elimelech and Yuanmiaoliang “Selina” Chen published a study in Nature Water on mimicking dialysis from the medical field to treat wastewater. Photo by Gustavo Raskosky/Rice University

By employing medical field technology dialysis, researchers at Rice University and the Guangdong University of Technology in China uncovered a new way to treat high-salinity organic wastewater.

In the medical field, dialysis uses a machine called a dialyzer to filter waste and excess fluid from the blood. In a study published in Nature Water, Rice’s team found that mimicking dialysis can separate salts from organic substances with minimal dilution of the wastewater, addressing some of the limitations of previous methods.

The researchers say this has the potential to lower costs, recover valuable resources across a range of industrial sectors and reduce environmental impacts.

“Traditional methods often demand a lot of energy and require repeated dilutions,” Yuanmiaoliang “Selina” Chen, a co-first author and postdoctoral associate in Elimelech’s lab at Rice, said in a news release. “Dialysis eliminates many of these pain points, reducing water consumption and operational overheads.”

Various industries generate high-salinity organic wastewater, including petrochemical, pharmaceutical and textile manufacturing. The wastewater’s high salt and organic content can present challenges for existing treatment processes. Biological and advanced oxidation treatments become less effective with higher salinity levels. Thermal methods are considered “energy intensive” and susceptible to corrosion.

Ultimately, the researchers found that dialysis effectively removed salt from water without requiring large amounts of fresh water. This process allows salts to move into the dialysate stream while keeping most organic compounds in the original solution. Because dialysis relies on diffusion instead of pressure, salts and organics cross the membrane at different speeds, making the separation method more efficient.

“Dialysis was astonishingly effective in separating the salts from the organics in our trials,” Menachem Elimelech, a corresponding author on the study and professor of civil and environmental engineering and chemical and biomolecular engineering at Rice, said in a news release. “It’s an exciting discovery with the potential to redefine how we handle some of our most intractable wastewater challenges.”

Trending News

A View From HETI

A federal judge has thrown out President Trump's executive order blocking wind energy development, calling it 'arbitrary and capricious.' Photo by Moritz Lange via Unsplash.

In a win for clean energy and wind projects in Texas and throughout the U.S., a federal judge struck down President Donald Trump’s “Day One” executive order that blocked wind energy development on federal lands and waters, the Associated Press reports.

Judge Patti Saris of the U.S. District Court for the District of Massachusetts vacated Trump’s executive order from Jan. 20, declaring it unlawful and calling it “arbitrary and capricious.”

The challenge was led by a group of state attorneys general from 17 states and Washington, D.C., which was led by New York Attorney General Letitia James. The coalition pushed back against Trump's order , arguing that the administration didn’t have the authority to halt project permitting, and that efforts would critically impact state economies, the energy industry, public health and climate relief efforts.

White House spokesperson Taylor Rogers told the Associated Press that wind projects were given unfair treatment during the Biden Administration and cited that the rest of the energy industry suffered from regulations.

According to the American Clean Power Association, wind is the largest source of renewable energy in the U.S. It provides 10 percent of the electricity generated—and growing. Texas leads the nation in wind electricity generation, accounting for 28 percent of the U.S. total in 2024, according to the U.S. Energy Information Administration.

Several clean-energy initiatives have been disrupted by recent policy changes, impacting Houston projects.

The Biden era Inflation Reduction Act’s 10-year hydrogen incentive was shortened under Trump’s One Big Beautiful Bill Act, prompting ExxonMobil to pause its Baytown low-carbon hydrogen project. That project — and two others in the Houston region — also lost federal support as part of a broader $700 million cancellation tied to DOE cuts.

Meanwhile, Texas House Democrats have urged the administration to restore a $250 million Solar for All grant that would have helped low-income households install solar panels.

Trending News