Rheom Materials presented its bio-based alternative, Shorai, a 93 percent bio-based leather, at the rodeo and plans to scale it up this year. Photos courtesy Rheom Materials

Last month’s Houston Livestock Show and Rodeo stirred up another rootin’ tootin’ time for Houstonians and beyond.

But before the annual event galloped into the sunset, there were quite a few memorable innovations on display, with one notably coming from Rheom Materials.

The Houston-based pioneer of next-generation materials presented its scalable, bio-based alternative known as Shorai, a 93 percent bio-based leather, through two custom, western-inspired outfits that showed off cowboy flair through a sustainable lens.

“I'm a Houstonian, I love the rodeo,” Megan Beck, Rheom’s business development manager, recalls. “We're sitting there talking about it one day and we're like, ‘Okay, we've got to do something with this leather to show people how good it can look in apparel, how easy it is to wear.’”

Buoyed by the idea that their materials are meant to “change your impact, not your life,” Rheom captured the real-life energy of their bio-leather outfits under the rodeo’s neon lights in a short commercial video and photo shoot with models donning the samples, while dancing and enjoying the festivities. Rheom created a skirt, a leather jacket, and then a leather top for the look.

“Houston is such a vibrant city,” Beck says. “There's so much innovation here. I think the rodeo is just a really, really great example of that. And so we wanted to take this opportunity to take some of these garments out there and go on the slide, go on some of the rides, go into the wine garden and go dancing, because if you've ever felt some of the materials in the market in this space, they're very stiff, you can't really move in them, they're a little fragile, they kind of fall apart.”

Not only do the models in the video look fashionable, but they also look comfortable, and the leather looks natural and supple. And to the naked eye, Shorai appears to be like the leather most wearers are accustomed to.

“What we really wanted to showcase in this is the energy and the movement of the leather, and to show people how good it can look in apparel, and how easy it is to wear, which I think we were able to accomplish,” Beck says.

Next up, Beck says Rheom wants to scale production of Shorai, the Japanese word for “future,” at a competitive price point, while also reducing its carbon footprint by 80 percent when compared to synthetic leather. According to Beck, Rheom plans to see Shorai products come to market sometime this year.

“We have companies globally right now that are testing materials, that are prototyping, that are making garments, making handbags and footwear, and making eyewear because we have a plastic, as well,” Beck says. “So, this year, I do believe we'll start seeing those products actually come to market, which is very, very exciting for us.”

And with their large-scale production partner already set up for Shorai, Rheom plans to start its first production run of the product soon.

“In April, we'll actually be starting our first production run,” Beck says. “We'll be doing it at full scale, full width, and a full run of materials. So over the next five years, we're only going to just try to increase that capacity.”

----

This story originally appeared on our sister site, InnovationMap.


A team led by Matteo Pasquali, director of Rice’s Carbon Hub, has unveiled how carbon nanotube fibers can be a sustainable alternative to materials like steel, copper and aluminum. Photo by Jeff Fitlow/ Courtesy Rice University

Houston researchers reach 'surprising' revelation in materials recycling efforts

keep it clean

Researchers at Rice University have published a study in the journal Carbon that demonstrates how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties.

The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.

“Recycling has long been a challenge in the materials industry — metals recycling is often inefficient and energy intensive, polymers tend to lose their properties after reprocessing and carbon fibers cannot be recycled at all, only downcycled by chopping them up into short pieces,” corresponding author Matteo Pasquali, director of Rice’s Carbon Hub and the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering and Chemistry, explained in a news release. “As CNT fibers are being scaled up, we asked whether and how these new materials could be recycled in the future .... We expected that recycling would be difficult and would lead to significant loss of properties. Surprisingly, we found that carbon nanotube fibers far exceed the recyclability potential of existing engineered materials, offering a solution to a major environmental issue.”

Rice researchers used a solution-spun CNT fiber that was created by dissolving fiber-grade commercial CNTs in chlorosulfonic acid, according to Rice. Mixing the two fibers led to complete redissolution and no sign of separation of the two source materials into different liquid phases. This redissolved material was spun into a mixed-source recycled fiber that retained the same structure and alignment, which was unprecedented.

Pasquali explained in a video release that the new material has properties that overlap with and could be a replacement for carbon fibers, kevlar, steel, copper and aluminum.

“This preservation of quality means CNT fibers can be used and reused in demanding applications without compromising performance, thus extending their lifecycle and reducing the need for new raw materials,” co-first author Ivan R. Siqueira, a recent doctoral graduate in Rice’s Department of Chemical and Biomolecular Engineering, said in a news release.

Other co-authors of the paper are Rice graduate alumni Oliver Dewey, now of DexMat; Steven Williams; Cedric Ginestra, now of LyondellBasell; Yingru Song, now a postdoctoral fellow at Purdue University; Rice undergraduate alumnus Juan De La Garza, now of Axiom Space; and Geoff Wehmeyer, assistant professor of mechanical engineering.

The research is part of the broader program of the Rice-led Carbon Hub, an initiative to develop a zero-emissions future. The work was also supported by the Department of Energy’s Advanced Research Project Agency, the Air Force Office of Scientific Research and a number of other organizations.

Pasquali recently led another team of Rice researchers to land a $4.1 million grant to optimize CNT synthesis. The funds came from Rice’s Carbon Hub and The Kavli Foundation. Read more here.

.

.

.

Rheom Materials announced a strategic partnership with Bixby International for the commercial-scale production of its novel biobased material, Shorai. Photo via Rheom

Houston biomaterials startup taps partner for commercial-scale production

next-gen news

A Houston-based next-gen material startup has revealed a new strategic partnership.

Rheom Materials, formerly known as Bucha Bio, has announced a strategic partnership with thermoplastic extrusion and lamination company Bixby International, which is part of Rheom Material’s goal for commercial-scale production of its novel biobased material, Shorai.

Shorai is a biobased leather alternative that meets criteria for many companies wanting to incorporate sustainable materials. Shorai performs like traditional leather, but offers scalable production at a competitive price point. Extruded as a continuous sheet and having more than 92 percent biobased content, Shorai achieves an 80 percent reduction in carbon footprint compared to synthetic leather, according to Rheom.

Rheom, which is backed by Houston-based New Climate Ventures, will be allowing Bixby International to take a minority ownership stake in Rheom Materials, as part of the deal.

“Partnering with Bixby International enables us to harness their extensive expertise in the extrusion industry and its entire supply chain, facilitating the successful scale-up of Shorai production,” Carolina Amin Ferril, CTO at Rheom Materials, says in a news release. “Their highly competitive and adaptable capabilities will allow us to offer more solutions and exceed our customers’ expectations.”

In late 2024, Rheom Materials started its first pilot-scale trial at the Bixby International facilities with the goal to produce Shorai for prototype samples.

"The scope of what we were doing — both on what raw materials we were using and what we were creating just kept expanding and growing," founder Zimri Hinshaw previously told InnovationMap.

Listen to Hinshaw on the Houston Innovators Podcast episode recorded in October:


———

This article originally appeared on our sister site, InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Investment bank opens energy-focused office in Houston

new to hou

Investment bank Cohen & Co. Capital Markets has opened a Houston office to serve as the hub of its energy advisory business and has tapped investment banking veteran Rahul Jasuja as the office’s leader.

Jasuja joined Cohen & Co. Capital Markets, a subsidiary of financial services company Cohen & Co., as managing director, and head of energy and energy transition investment banking. Cohen’s capital markets arm closed $44 billion worth of deals last year.

Jasuja previously worked at energy-focused Houston investment bank Mast Capital Advisors, where he was managing director of investment banking. Before Mast Capital, Jasuja was director of energy investment banking in the Houston office of Wells Fargo Securities.

“Meeting rising [energy] demand will require disciplined capital allocation across traditional energy, sustainable fuels, and firm, dispatchable solutions such as nuclear and geothermal,” Jasuja said in a news release. “Houston remains the center of gravity where capital, operating expertise, and execution come together to make that transition investable.”

The Houston office will focus on four energy verticals:

  • Energy systems such as nuclear and geothermal
  • Energy supply chains
  • Energy-transition fuel and technology
  • Traditional energy
“We are making a committed investment in Houston because we believe the infrastructure powering AI, defense, and energy transition — from nuclear to rare-earth technology — represents the next secular cycle of value creation,” Jerry Serowik, head of Cohen & Co. Capital Markets, added in the release.

Houston cleantech startup Helix Earth lands $1.2M NSF grant

federal funding

Renewable equipment manufacturer Helix Earth Technologies is one of three Houston-based companies to secure federal funding through the Small Business Innovation Research (SBIR) Phase II grant program in recent months.

The company—which was founded based on NASA technology, spun out of Rice University and has been incubated at Greentown Labs—has received approximately $1.2 million from the National Science Foundation to develop its high-efficiency retrofit dehumidification systems that aim to reduce the energy consumption of commercial AC units. The company reports that its technology has the potential to cut AC energy use by up to 50 percent.

"This award validates our vision and propels our impact forward with valuable research funding and the prestige of the NSF stamp of approval," Rawand Rasheed, Helix CEO and founder, shared in a LinkedIn post. "This award is a reflection our exceptional team's grit, expertise, and collaborative spirit ... This is just the beginning as we continue pushing for a sustainable future."

Two other Houston-area companies also landed $1.2 million in NSF SBIR Phase II funding during the same period:

  • Resilitix Intelligence, a disaster AI startup that was founded shortly after Hurricane Harvey, that works to "reduce the human and economic toll of disasters" by providing local and state organizations and emergency response teams with near-real-time, AI-driven insights to improve response speed, save lives and accelerate recovery
  • Conroe-based Fluxworks Inc., founded in 2021 at Texas A&M, which provides magnetic gear technology for the space industry that has the potential to significantly enhance in-space manufacturing and unlock new capabilities for industries by allowing advanced research and manufacturing in microgravity

The three grants officially rolled out in early September 2025 and are expected to run through August 2027, according to the NSF. The SBIR Phase II grants support in-depth research and development of ideas that showed potential for commercialization after receiving Phase I grants from government agencies.

However, congressional authority for the program, often called "America's seed fund," expired on September 30, 2025, and has stalled since the recent government shutdown. Government agencies cannot issue new grants until Congress agrees on a path forward. According to SBIR.gov, "if no further action is taken by Congress, federal agencies may not be able to award funding under SBIR/STTR programs and SBIR/STTR solicitations may be delayed, cancelled, or rescinded."

Mars Materials makes breakthrough in clean carbon fiber production

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.