Rheom Materials presented its bio-based alternative, Shorai, a 93 percent bio-based leather, at the rodeo and plans to scale it up this year. Photos courtesy Rheom Materials

Last month’s Houston Livestock Show and Rodeo stirred up another rootin’ tootin’ time for Houstonians and beyond.

But before the annual event galloped into the sunset, there were quite a few memorable innovations on display, with one notably coming from Rheom Materials.

The Houston-based pioneer of next-generation materials presented its scalable, bio-based alternative known as Shorai, a 93 percent bio-based leather, through two custom, western-inspired outfits that showed off cowboy flair through a sustainable lens.

“I'm a Houstonian, I love the rodeo,” Megan Beck, Rheom’s business development manager, recalls. “We're sitting there talking about it one day and we're like, ‘Okay, we've got to do something with this leather to show people how good it can look in apparel, how easy it is to wear.’”

Buoyed by the idea that their materials are meant to “change your impact, not your life,” Rheom captured the real-life energy of their bio-leather outfits under the rodeo’s neon lights in a short commercial video and photo shoot with models donning the samples, while dancing and enjoying the festivities. Rheom created a skirt, a leather jacket, and then a leather top for the look.

“Houston is such a vibrant city,” Beck says. “There's so much innovation here. I think the rodeo is just a really, really great example of that. And so we wanted to take this opportunity to take some of these garments out there and go on the slide, go on some of the rides, go into the wine garden and go dancing, because if you've ever felt some of the materials in the market in this space, they're very stiff, you can't really move in them, they're a little fragile, they kind of fall apart.”

Not only do the models in the video look fashionable, but they also look comfortable, and the leather looks natural and supple. And to the naked eye, Shorai appears to be like the leather most wearers are accustomed to.

“What we really wanted to showcase in this is the energy and the movement of the leather, and to show people how good it can look in apparel, and how easy it is to wear, which I think we were able to accomplish,” Beck says.

Next up, Beck says Rheom wants to scale production of Shorai, the Japanese word for “future,” at a competitive price point, while also reducing its carbon footprint by 80 percent when compared to synthetic leather. According to Beck, Rheom plans to see Shorai products come to market sometime this year.

“We have companies globally right now that are testing materials, that are prototyping, that are making garments, making handbags and footwear, and making eyewear because we have a plastic, as well,” Beck says. “So, this year, I do believe we'll start seeing those products actually come to market, which is very, very exciting for us.”

And with their large-scale production partner already set up for Shorai, Rheom plans to start its first production run of the product soon.

“In April, we'll actually be starting our first production run,” Beck says. “We'll be doing it at full scale, full width, and a full run of materials. So over the next five years, we're only going to just try to increase that capacity.”

----

This story originally appeared on our sister site, InnovationMap.


A team led by Matteo Pasquali, director of Rice’s Carbon Hub, has unveiled how carbon nanotube fibers can be a sustainable alternative to materials like steel, copper and aluminum. Photo by Jeff Fitlow/ Courtesy Rice University

Houston researchers reach 'surprising' revelation in materials recycling efforts

keep it clean

Researchers at Rice University have published a study in the journal Carbon that demonstrates how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties.

The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.

“Recycling has long been a challenge in the materials industry — metals recycling is often inefficient and energy intensive, polymers tend to lose their properties after reprocessing and carbon fibers cannot be recycled at all, only downcycled by chopping them up into short pieces,” corresponding author Matteo Pasquali, director of Rice’s Carbon Hub and the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering and Chemistry, explained in a news release. “As CNT fibers are being scaled up, we asked whether and how these new materials could be recycled in the future .... We expected that recycling would be difficult and would lead to significant loss of properties. Surprisingly, we found that carbon nanotube fibers far exceed the recyclability potential of existing engineered materials, offering a solution to a major environmental issue.”

Rice researchers used a solution-spun CNT fiber that was created by dissolving fiber-grade commercial CNTs in chlorosulfonic acid, according to Rice. Mixing the two fibers led to complete redissolution and no sign of separation of the two source materials into different liquid phases. This redissolved material was spun into a mixed-source recycled fiber that retained the same structure and alignment, which was unprecedented.

Pasquali explained in a video release that the new material has properties that overlap with and could be a replacement for carbon fibers, kevlar, steel, copper and aluminum.

“This preservation of quality means CNT fibers can be used and reused in demanding applications without compromising performance, thus extending their lifecycle and reducing the need for new raw materials,” co-first author Ivan R. Siqueira, a recent doctoral graduate in Rice’s Department of Chemical and Biomolecular Engineering, said in a news release.

Other co-authors of the paper are Rice graduate alumni Oliver Dewey, now of DexMat; Steven Williams; Cedric Ginestra, now of LyondellBasell; Yingru Song, now a postdoctoral fellow at Purdue University; Rice undergraduate alumnus Juan De La Garza, now of Axiom Space; and Geoff Wehmeyer, assistant professor of mechanical engineering.

The research is part of the broader program of the Rice-led Carbon Hub, an initiative to develop a zero-emissions future. The work was also supported by the Department of Energy’s Advanced Research Project Agency, the Air Force Office of Scientific Research and a number of other organizations.

Pasquali recently led another team of Rice researchers to land a $4.1 million grant to optimize CNT synthesis. The funds came from Rice’s Carbon Hub and The Kavli Foundation. Read more here.

.

.

.

Rheom Materials announced a strategic partnership with Bixby International for the commercial-scale production of its novel biobased material, Shorai. Photo via Rheom

Houston biomaterials startup taps partner for commercial-scale production

next-gen news

A Houston-based next-gen material startup has revealed a new strategic partnership.

Rheom Materials, formerly known as Bucha Bio, has announced a strategic partnership with thermoplastic extrusion and lamination company Bixby International, which is part of Rheom Material’s goal for commercial-scale production of its novel biobased material, Shorai.

Shorai is a biobased leather alternative that meets criteria for many companies wanting to incorporate sustainable materials. Shorai performs like traditional leather, but offers scalable production at a competitive price point. Extruded as a continuous sheet and having more than 92 percent biobased content, Shorai achieves an 80 percent reduction in carbon footprint compared to synthetic leather, according to Rheom.

Rheom, which is backed by Houston-based New Climate Ventures, will be allowing Bixby International to take a minority ownership stake in Rheom Materials, as part of the deal.

“Partnering with Bixby International enables us to harness their extensive expertise in the extrusion industry and its entire supply chain, facilitating the successful scale-up of Shorai production,” Carolina Amin Ferril, CTO at Rheom Materials, says in a news release. “Their highly competitive and adaptable capabilities will allow us to offer more solutions and exceed our customers’ expectations.”

In late 2024, Rheom Materials started its first pilot-scale trial at the Bixby International facilities with the goal to produce Shorai for prototype samples.

"The scope of what we were doing — both on what raw materials we were using and what we were creating just kept expanding and growing," founder Zimri Hinshaw previously told InnovationMap.

Listen to Hinshaw on the Houston Innovators Podcast episode recorded in October:


———

This article originally appeared on our sister site, InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston company wins contract to operate South Texas wind farm

wind deal

Houston-based Consolidated Asset Management Services (CAMS), which provides services for owners of energy infrastructure, has added the owner of a South Texas wind power project to its customer list.

The new customer, InfraRed Capital Partners, owns the 202-megawatt Mesteño Wind Project in the Rio Grande Valley. InfraRed bought the wind farm from Charlotte, North Carolina-based power provider Duke Energy in 2024. CAMS will provide asset management, remote operations, maintenance, compliance and IT services for the Mesteño project.

Mesteño began generating power in 2019. The wind farm is connected to the electric grid operated by the Energy Reliability Council of Texas (ERCOT).

With the addition of Mesteño, CAMS now manages wind energy projects with generation capacity of more than 2,500 megawatts.

Mesteño features one of the tallest wind turbine installations in the U.S., with towers reaching 590.5 feet. Located near Rio Grande City, the project produces enough clean energy to power about 60,000 average homes.

In June, CAMS was named to the Financial Times’ list of the 300 fastest-growing companies in North and South America. The company’s revenue grew more than 70 percent from 2020 to 2023.

Earlier this year, CAMS jumped into the super-hot data center sector with the rollout of services designed to help deliver reliable, cost-effective power to energy-hungry data centers. The initiative focuses on supplying renewable energy and natural gas.

Google's $40B investment in Texas data centers includes energy infrastructure

The future of data

Google is investing a huge chunk of money in Texas: According to a release, the company will invest $40 billion on cloud and artificial intelligence (AI) infrastructure, with the development of new data centers in Armstrong and Haskell counties.

The company announced its intentions at a meeting on November 14 attended by federal, state, and local leaders including Gov. Greg Abbott who called it "a Texas-sized investment."

Google will open two new data center campuses in Haskell County and a data center campus in Armstrong County.

Additionally, the first building at the company’s Red Oak campus in Ellis County is now operational. Google is continuing to invest in its existing Midlothian campus and Dallas cloud region, which are part of the company’s global network of 42 cloud regions that deliver high-performance, low-latency services that businesses and organizations use to build and scale their own AI-powered solutions.

Energy demands

Google is committed to responsibly growing its infrastructure by bringing new energy resources onto the grid, paying for costs associated with its operations, and supporting community energy efficiency initiatives.

One of the new Haskell data centers will be co-located with — or built directly alongside — a new solar and battery energy storage plant, creating the first industrial park to be developed through Google’s partnership with Intersect and TPG Rise Climate announced last year.

Google has contracted to add more than 6,200 megawatts (MW) of net new energy generation and capacity to the Texas electricity grid through power purchase agreements (PPAs) with energy developers such as AES Corporation, Enel North America, Intersect, Clearway, ENGIE, SB Energy, Ørsted, and X-Elio.

Water demands

Google’s three new facilities in Armstrong and Haskell counties will use air-cooling technology, limiting water use to site operations like kitchens. The company is also contributing $2.6 million to help Texas Water Trade create and enhance up to 1,000 acres of wetlands along the Trinity-San Jacinto Estuary. Google is also sponsoring a regenerative agriculture program with Indigo Ag in the Dallas-Fort Worth area and an irrigation efficiency project with N-Drip in the Texas High Plains.

In addition to the data centers, Google is committing $7 million in grants to support AI-related initiatives in healthcare, energy, and education across the state. This includes helping CareMessage enhance rural healthcare access; enabling the University of Texas at Austin and Texas Tech University to address energy challenges that will arise with AI, and expanding AI training for Texas educators and students through support to Houston City College.

---

This article originally appeared on CultureMap.com.

Texas A&M's micro-nuclear reactor tops energy transition news to know

Trending News

Editor's note: The top energy transition news of November includes major energy initiatives from Texas universities and the creation of a new Carbon Measures coalition. Here are the most-read EnergyCapitalHTX stories from Nov. 1-15:

1. Micro-nuclear reactor to launch next year at Texas A&M innovation campus

Last Energy will build a 5-megawatt reactor at the Texas A&M-RELLIS campus. Photo courtesy Last Energy.

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan. Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid. Continue reading.

2. Baker Hughes to provide equipment for massive low-carbon ammonia plant

Baker Hughes will supply equipment for Blue Point Number One, a $4 billion low-carbon ammonia plant being developed in Louisiana. Photo courtesy Technip Energies.

Houston-based energy technology company Baker Hughes has been tapped to supply equipment for what will be the world’s largest low-carbon ammonia plant. French technology and engineering company Technip Energies will buy a steam turbine generator and compression equipment from Baker Hughes for Blue Point Number One, a $4 billion low-carbon ammonia plant being developed in Louisiana by a joint venture comprising CF Industries, JERA and Mitsui & Co. Technip was awarded a contract worth at least $1.1 billion to provide services for the Blue Point project. Continue reading.

3. Major Houston energy companies join new Carbon Measures coalition

The new Carbon Measures coalition will create a framework that eliminates double-counting of carbon pollution and attributes emissions to their sources. Photo via Getty Images.

Six companies with a large presence in the Houston area have joined a new coalition of companies pursuing a better way to track the carbon emissions of products they manufacture, purchase and finance. Houston-area members of the Carbon Measures coalition are Spring-based ExxonMobil; Air Liquide, whose U.S. headquarters is in Housto; Mitsubishi Heavy Industries, whose U.S. headquarters is in Houston; Honeywell, whose Performance Materials and Technologies business is based in Houston; BASF, whose global oilfield solutions business is based in Houston; and Linde, whose Linde Engineering Americas business is based in Houston. Continue reading.

4. Wind and solar supplied over a third of ERCOT power, report shows

A new report from the U.S. Energy Information Administration shows that wind and solar supplied more than 30 percent of ERCOT’s electricity in the first nine months of 2025. Photo via Unsplash.

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA). The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024. Continue reading.

5. Rice University partners with Australian co. to boost mineral processing, battery innovation

Locksley Resources will provide antimony-rich feedstocks from a project in the Mojave Desert as part of a new partnership with Rice University that aims to develop scalable methods for extracting and utilizing antimony. Photo via locksleyresources.com.au.

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage. Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Continue reading.