small scale, big impact

Rice scientists develop simple but game-changing carbon capture device

Peng Zhu (left) and Haotian Wang developed a carbon-capture device prototype. Photos courtesy Jeff Fitlow/Rice University

A Rice University lab has developed an efficient, scalable way to capture carbon dioxide — and it just needs to be plugged into a power outlet to work.

The new technology developed in the lab of chemical and biomolecular engineer Haotian Wang, the William Marsh Rice Trustee Chair and an associate professor at Rice, uses electricity to remove carbon dioxide from air capture to induce a water-and-oxygen-based electrochemical reaction. The findings were shared in a study published in Nature last month.

Traditionally, carbon capture requires very energy intensive processes that need high temperatures and for the carbon that's been captured to be regenerated. The process also often requires large-scale infrastructure.

In the Wang lab's method, the small reactor can continuously remove carbon dioxide from a simulated flue gas with nearly 100 percent efficiency, generating between 10 to 25 liters of high-purity carbon using only the power of a standard lightbulb, according to a statement from Rice.

It does not create or consume chemicals, nor does it need to be heated up or pressurized, according to Wang. And it only requires a simple power source.

"The technology can be scaled up to industrial settings—power plants, chemical plants—but the great thing about it is that it allows for small-scale use as well: I can even use it in my office,” Wang says in the statement. “We could, for example, pull carbon dioxide from the atmosphere and continuously inject that concentrated gas into a greenhouse to stimulate plant growth. We’ve heard from space technology companies interested in using the device on space stations to remove the carbon dioxide astronauts exhale.”

Wang and lab member Peng Zhu, a chemical and biomolecular engineering graduate student at Rice and lead author on the study, initially made the discovery when working on an earlier version of the reactor intended for carbon dioxide utilization.

During this process Zhu noticed that gas bubbles flowed out of the reactor’s middle chamber when producing liquid products like acetic acid and formic acid, and that the number of bubbles would increase when more current was applied to the reactor.

This led the scientists to realize that the reactor was creating carbonate ions that were converted into a continuous flow of high-purity carbon dioxide after passing through the reactor's solid-electrolyte layer.

“Scientific discovery often requires this patient, continuous observation and the curiosity to learn what’s really going on, the choice not to neglect those phenomena that don’t necessarily fit in the experimental frame," Wang said in a statement.

A number of players in the Houston area have been making headway in carbon capture space in recent weeks.

Earlier this summer, the U.S. Department of Energy granted more than $45 million in federal funding to four Houston companies to promote the capture, transportation, use, and storage of tons of carbon dioxide emissions.

The Rice Alliance also recently named 15 startups to its Clean Energy Accelerator. A number of the fledgling companies are focused on carbon management and capture.

Video by Brandon Martin/Rice University

Trending News

A View From HETI

plastics project postponed

ExxonMobil postpones $10B plastics manufacturing plant

ExxonMobil says it will "slow the pace" of development of its $10 billion plastics manufacturing plant. Photo via Getty Images.

Spring-based ExxonMobil is postponing development of a $10 billion plastics manufacturing plant along the Gulf Coast. Construction on the plant, to be located near Port Lavaca, was supposed to begin next year.

“Based on current market conditions, we are going to slow the pace of our development for the Coastal Plain Venture,” ExxonMobil confirmed in an emailed statement. “We’re confident in our growth strategy, and we remain interested in a potential project along the U.S. Gulf Coast and in other regions around the world. We’re maintaining good relationships with community leaders and contractors, so we are ready to reevaluate the project’s status when market conditions improve.”

According to Independent Commodity Intelligence Services, the Coastal Plain project was preliminary, and ExxonMobil had not yet announced its decision about building a plant for polyethylene production. Polyethylene, the world’s most common plastic, is used in a variety of products, such as bags, bottles, food containers, automotive components, medical tubes, IV bags, children’s toys and cutting boards.

The Coastal Plain postponement follows a judge’s ruling in August that invalidated a decision by Calhoun County ISD board members to negotiate tax breaks with ExxonMobil, according to Inside Climate News. The judge made the ruling in a case filed by environmental activist Diane Wilson and her nonprofit group, San Antonio Bay Estuarine Waterkeeper.

Wilson told Inside Climate News that she thought public opposition played a part in ExxonMobil postponing the Coastal Plain project.

“I think if everybody had just rolled over for them, if they got exactly what they wanted (tax breaks) and there wasn’t a big fight, there would be no delay,” Wilson said.

Trending News