small scale, big impact

Rice scientists develop simple but game-changing carbon capture device

Peng Zhu (left) and Haotian Wang developed a carbon-capture device prototype. Photos courtesy Jeff Fitlow/Rice University

A Rice University lab has developed an efficient, scalable way to capture carbon dioxide — and it just needs to be plugged into a power outlet to work.

The new technology developed in the lab of chemical and biomolecular engineer Haotian Wang, the William Marsh Rice Trustee Chair and an associate professor at Rice, uses electricity to remove carbon dioxide from air capture to induce a water-and-oxygen-based electrochemical reaction. The findings were shared in a study published in Nature last month.

Traditionally, carbon capture requires very energy intensive processes that need high temperatures and for the carbon that's been captured to be regenerated. The process also often requires large-scale infrastructure.

In the Wang lab's method, the small reactor can continuously remove carbon dioxide from a simulated flue gas with nearly 100 percent efficiency, generating between 10 to 25 liters of high-purity carbon using only the power of a standard lightbulb, according to a statement from Rice.

It does not create or consume chemicals, nor does it need to be heated up or pressurized, according to Wang. And it only requires a simple power source.

"The technology can be scaled up to industrial settings—power plants, chemical plants—but the great thing about it is that it allows for small-scale use as well: I can even use it in my office,” Wang says in the statement. “We could, for example, pull carbon dioxide from the atmosphere and continuously inject that concentrated gas into a greenhouse to stimulate plant growth. We’ve heard from space technology companies interested in using the device on space stations to remove the carbon dioxide astronauts exhale.”

Wang and lab member Peng Zhu, a chemical and biomolecular engineering graduate student at Rice and lead author on the study, initially made the discovery when working on an earlier version of the reactor intended for carbon dioxide utilization.

During this process Zhu noticed that gas bubbles flowed out of the reactor’s middle chamber when producing liquid products like acetic acid and formic acid, and that the number of bubbles would increase when more current was applied to the reactor.

This led the scientists to realize that the reactor was creating carbonate ions that were converted into a continuous flow of high-purity carbon dioxide after passing through the reactor's solid-electrolyte layer.

“Scientific discovery often requires this patient, continuous observation and the curiosity to learn what’s really going on, the choice not to neglect those phenomena that don’t necessarily fit in the experimental frame," Wang said in a statement.

A number of players in the Houston area have been making headway in carbon capture space in recent weeks.

Earlier this summer, the U.S. Department of Energy granted more than $45 million in federal funding to four Houston companies to promote the capture, transportation, use, and storage of tons of carbon dioxide emissions.

The Rice Alliance also recently named 15 startups to its Clean Energy Accelerator. A number of the fledgling companies are focused on carbon management and capture.

Video by Brandon Martin/Rice University

Trending News

A View From HETI

Chinese officials told Tesla that Beijing has tentatively approved the automaker's plan to launch its “Full Self-Driving,” or FSD, software feature in the country. Photo via tesla.com

Shares of Tesla stock rallied Monday after the electric vehicle maker's CEO, Elon Musk, paid a surprise visit to Beijing over the weekend and reportedly won tentative approval for its driving software.

Musk met with a senior government official in the Chinese capital Sunday, just as the nation’s carmakers are showing off their latest electric vehicle models at the Beijing auto show.

According to The Wall Street Journal, which cited anonymous sources familiar with the matter, Chinese officials told Tesla that Beijing has tentatively approved the automaker's plan to launch its “Full Self-Driving,” or FSD, software feature in the country.

Although it's called FSD, the software still requires human supervision. On Friday the U.S. government’s auto safety agency said it is investigating whether last year’s recall of Tesla’s Autopilot driving system did enough to make sure drivers pay attention to the road. Tesla has reported 20 more crashes involving Autopilot since the recall, according to the National Highway Traffic Safety Administration.

In afternoon trading, shares in Tesla Inc., which is based in Austin, Texas, surged to end Monday up more than 15% — its biggest one-day jump since February 2020. For the year to date, shares are still down 22%.

Tesla has been contending with its stock slide and slowing production. Last week, the company said its first-quarter net income plunged by more than half, but it touted a newer, cheaper car and a fully autonomous robotaxi as catalysts for future growth.

Wedbush analyst Dan Ives called the news about the Chinese approval a “home run” for Tesla and maintained his “Outperform” rating on the stock.

“We note Tesla has stored all data collected by its Chinese fleet in Shanghai since 2021 as required by regulators in Beijing,” Ives wrote in a note to investors. “If Musk is able to obtain approval from Beijing to transfer data collected in China abroad this would be pivotal around the acceleration of training its algorithms for its autonomous technology globally.”

Trending News