The University of Houston is one of 23 institutions to be awarded DOE funding for fusion research. Photo courtesy UH.

The University of Houston will receive $8 million in federal funding from the U.S. Department of Energy for its work on fusion technology to help power data centers and medical work.

Venkat Selvamanickam, professor at UH’s Cullen College of Mechanical and Aerospace Engineering and director of the Advanced Manufacturing Institute, has been tasked to lead the research on superconducting magnets that he said will make compact fusion reactors possible.

“Beyond fusion, superconductors can transform how we deliver power to data centers, enable highly efficient motors and generators and improve electric power devices,” Selvamanickam said in a news release. “They also enable critical applications such as MRI and proton beam therapy for cancer treatment. I want society to experience the broad benefits this remarkable technology can provide.”

UH is one of 23 institutions selected to share part of $134 million from the DOE’s Fusion Energy Sciences division. The total funding is split across two initiatives: $128 million for the Fusion Innovation Research Engine (FIRE) and $6.1 million for the Innovation Network for Fusion Energy program, according to the university.

UH will partner with the FIRE Collaborative for the research, which looks to understand why superconducting magnets in fusion reactors break down and work on developing solutions to make them more resilient.

“The advantage of fusion is it’s clean and it does not require storage. Solar energy can’t be used at night, and wind energy depends on wind conditions,” Selvamanickam added in the release. “Our goal is to make fusion a truly viable energy source.”

The Houston projects involve the innovative reuse of oil rig platforms and wind turbines. Courtesy rendering

UH projects propose innovative reuse of wind turbines and more on Gulf Coast

Forward-thinking

Two University of Houston science projects have been selected as finalists for the Gulf Futures Challenge, which will award a total of $50 million to develop ideas that help benefit the Gulf Coast.

Sponsored by the National Academies of Science, Engineering and Medicine’s Gulf Coast Research Program and Lever for Change, the competition is designed to spark innovation around problems in the Gulf Coast, such as rising sea levels, pollution, energy security, and community resiliency. The two UH projects beat out 162 entries from organizations based in Alabama, Florida, Louisiana, Mississippi, and Texas.

“Being named a finalist for this highly competitive grant underscores the University of Houston’s role as a leading research institution committed to addressing the most pressing challenges facing our region,” said Claudia Neuhauser, vice president for research at UH.

“This opportunity affirms the strength of our faculty and researchers and highlights UH’s capacity to deliver innovative solutions that will ensure the long-term stability and resilience of the Gulf Coast.”

One project, spearheaded by the UH Repurposing Offshore Infrastructure for Continued Energy (ROICE) program, is studying ways to use decommissioned oil rig platforms in the Gulf of Mexico as both clean energy hydrogen power generators as well a marine habitats. There are currently thousands of such platforms in the Gulf.

The other project involves the innovative recycling of wind turbines into seawall and coastal habitats. Broken and abandoned wind turbine blades have traditionally been thought to be non-recyclable and end up taking up incredible space in landfills. Headed by a partnership between UH, Tulane University, the University of Texas Health Science Center at Houston, the city of Galveston and other organizations, this initiative could vastly reduce the waste associated with wind farm technology.

wind turbine recycled for Gulf Coast seawall.Wind turbines would be repurposed into seawalls and more. Courtesy rendering

"Coastal communities face escalating threats from climate change — land erosion, structural corrosion, property damage and negative health impacts,” said Gangbing Song, Moores Professor of Mechanical and Aerospace Engineering at UH and the lead investigator for both projects.

“Leveraging the durability and anti-corrosive properties of these of decommissioned wind turbine blades, we will build coastal structures, improve green spaces and advance the resilience and health of Gulf Coast communities through integrated research, education and outreach.”

The two projects have received a development grant of $300,000 as a prize for making it to the finals. When the winner are announced in early 2026, two of the projects will net $20 million each to bring their vision to life, with the rest earning a consolation prize of $875,000, in additional project support.

In the event that UH doesn't grab the grand prize, the school's scientific innovation will earn a guaranteed $1.75 million for the betterment of the Gulf Coast.

---

This article originally appeared on CultureMap.com.

The Welch Foundation has awarded funding through two of its newest grant programs. Photo via Getty Images.

Houston foundation doles out $700K for Texas chemical research

fresh funding

Houston-based The Welch Foundation has issued $700,000 in additional funding to support chemical research through two of its newest grant programs.

The foundation has named the recipients of its Welch eXperimental (WelchX) Collaboration Retreat and Pilot Grants and the Welch Postdoctoral Fellows of the Life Sciences Research Foundation Grants.

The WelchX grants were awarded to teams of two Texas researchers who presented "innovative and collaborative ideas" addressing challenges in the clean energy space, according to the foundation.

Researchers from Texas universities gathered in Houston earlier this summer to discuss the theme “Chemical Research for Grand Challenges." They then paired off into nine teams and submitted proposals for the $100,000 pilot grants. The seven selected teams, several with ties to Houston, and their research topics include:

  • Yimo Han, Rice University, and Yuanyue Liu, The University of Texas at Austin, “Stabilizing Copper Electrocatalysts for CO2 Conversion”
  • Ognjen Miljanic, University of Houston, and Indrajit Srivastava, Texas Tech University, “Ping-Pong' Afterglow Luminescence in Self-Assembled Molecular Cubes”
  • Raúl Hernández Sánchez, Rice University, and Andy Thomas, Texas A&M University, “Accelerating Magnetic Resonance Imaging Contrast Agent Discovery via Rapid Injection NMR: Improving the Detection of Lithium for Disease Diagnostics”
  • Benjamin Janesko, Texas Christian University, and MD Masud Rana, Lamar University, “Cyber Twin Chemical Ensembles for Near-Infrared-Emitting Graphene Quantum Dot Therapeutics”
  • Ivan Korendovych, Baylor University, and Dino Villagrán, The University of Texas at El Paso, “Selective Bio-Inspired Electrochemical Probes for PFAS Analysis and Degradation”
  • Samantha Kristufek, Texas Tech University, and Kayla Green, Texas Christian University, “CIRCUIT: Critical Ion Recovery using Conductive and Ultrafiltration Intelligent Technology”
  • Fang Xu, The University of Texas at San Antonio, and Hong Wang, University of North Texas, “Visualize Molecular Adsorption on Supported Ni-porphyrin Model Catalysts via Substitute Effect”

The Welch Postdoctoral Fellows of the Life Sciences Research Foundation provides three-year fellowships to recent PhD graduates to support clinical research careers in Texas.

The foundation previously announced that it would name fellows from Rice University and Baylor University who would receive $100,000 annually for three years. This year's recipients and their research topics include:

  • Teng Yuan, Rice University, “Unlocking New Chemistry of Nonheme Iron Enzymes for α-Amino Acids and γ-Lactones Synthesis”
  • Katelyn Baumler, Baylor University, "Crystal Growth of Ln2Fe4Sb5 Phases Toward the Study of Novel Quantum Properties”

“As these programs become more established, it is thrilling to see the new research our awardees are exploring,” Adam Kuspa, president of The Welch Foundation, said in a news release. “The Foundation is very pleased by the applications that we continue to receive describing exciting new research projects to advance chemical research.”

This additional funding comes on the heels of the foundation doling out $27 million for chemical research, equipment and postdoctoral fellowships earlier this summer. The foundation made 85 grants to faculty at 16 Texas institutions at the time. Read more here.

--

This article originally appeared on our sister site, Innovationmap.com.

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

UH researchers make breakthrough in cutting carbon capture costs

Carbon breakthrough

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants.

Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team released two significant publications that made significant strides relating to carbon capture processes. The first, published in Nature Communications, introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process. Another, featured on the cover of ES&T Engineering, demonstrated a vanadium redox flow system capable of both capturing carbon and storing renewable energy.

“These publications reflect our group’s commitment to fundamental electrochemical innovation and real-world applicability,” Rahimi said in a news release. “From membraneless systems to scalable flow systems, we’re charting pathways to decarbonize hard-to-abate sectors and support the transition to a low-carbon economy.”

According to the researchers, the “A Membraneless Electrochemically Mediated Amine Regeneration for Carbon Capture” research paper marked the beginning of the team’s first focus. The research examined the replacement of costly ion-exchange membranes with gas diffusion electrodes. They found that the membranes were the most expensive part of the system, and they were also a major cause of performance issues and high maintenance costs.

The researchers achieved more than 90 percent CO2 removal (nearly 50 percent more than traditional approaches) by engineering the gas diffusion electrodes. According to PhD student and co-author of the paper Ahmad Hassan, the capture costs approximately $70 per metric ton of CO2, which is competitive with other innovative scrubbing techniques.

“By removing the membrane and the associated hardware, we’ve streamlined the EMAR workflow and dramatically cut energy use,” Hassan said in the news release. “This opens the door to retrofitting existing industrial exhaust systems with a compact, low-cost carbon capture module.”

The second breakthrough, published by PhD student Mohsen Afshari, displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge. The results suggested that the technology could potentially provide carbon removal and grid balancing when used with intermittent renewables, such as solar or wind power.

“Integrating carbon capture directly into a redox flow battery lets us tackle two challenges in one device,” Afshari said in the release. “Our front-cover feature highlights its potential to smooth out renewable generation while sequestering CO2.”

A new UH survey shows Harris County residents fear power outages more than flooding or wind when severe weather hits. Photo via Getty Images.

Summer outages remain major concern despite CenterPoint upgrades, report shows

power report

A new survey from the University of Houston Hobby School of Public Affairs showed that nearly 70 percent of 2,300 Harris County registered voters polled were very worried or moderately worried about losing power this summer.

The survey asked residents questions about the potential impact of severe summer weather and to evaluate CenterPoint’s efforts to improve the electrical grid over the past year. It was conducted between July 9-18.

Among the three severe weather threats studied—being without power, high winds and flooding—loss of power was the primary concern among respondents. When asked to what extent residents were worried about being without power:

  • 42 percent were very worried
  • 27 percent were moderately worried
  • 19 percent were a little worried
  • 12 percent were not worried at all

Only 25 percent of respondents reported they were very worried about wind damage, and 20 percent were very worried about flooding.

The report also found that 63 percent of respondents held an unfavorable opinion of CenterPoint Energy.

And despite CenterPoint’s $3.2 billion Systemwide Resiliency Plan (SRP), partnerships with AI companies, and its ongoing Greater Houston Resiliency Initiative (GHRI), 44 percent of respondents said they believe CenterPoint has made only "a little bit" progress on improving the grid's overall reliability.

CenterPoint maintains that the SRP is expected to reduce storm-related outages by 1 billion minutes for its 2.8 million customers by 2029. The company also recently reported a 45 percent reduction in the duration of outages for individual customers from January to June of this year.

“We believe that these resiliency actions will help create a future with fewer outages that impact smaller clusters of customers, coupled with faster restoration times for our Greater Houston communities,” Jason Wells, president and CEO of CenterPoint, previously said in a news release.

Read the full report that includes demographic explanations here.
UH Energy's new Managing Non-Technical Risks in Energy program will launch Sept. 15. Photo courtesy University of Houston

UH launches latest micro-credential program focused on energy risks

coming soon

UH Energy at the University of Houston will launch a new micro-credential program this fall focused on risks associated with today's changing energy landscape.

The new self-paced, hybrid program, known as Managing Non-Technical Risks in Energy, is geared towards energy professionals and those who aspire to work in the industry. Enrollment must be completed by Sept. 15 to participate.

According to UH, it will equip participants with "tools, strategies, and real-world insights needed to lead confidently" as they face pressure to meet increased energy demand while also operating under sustainable guidelines.

The program will be led by expert instructors, including:


  • Suryanarayanan Radhakrishnan, Managing Director of UH Energy
  • Amy Mifflin, Principal Consultant and Partner at Sustrio Inc.
  • Chris Angelides, Honorary Consul of The Republic of Cyprus to Texas, Managing Director at Ernst & Young LLP
  • Carolina Ortega, Vice President, Sustainability and Communications at Milestone Environmental Services
  • Krish (Ravi) Ravishankar, Senior Director ESG Analytics & Reporting, Sustainability, Worldwide Environmental Affairs at Oxy

Participants can earn up to three "badges" through the program. Each badge consists of two modules, which can be completed virtually and take about 10 hours to complete over four weeks.

Each module will also include one in-person engagement session that will last about two hours.

The three badges include:


  • Badge 1: Managing Environmental and Social Risks and Impacts
  • Badge 2: Frameworks, Standards, and Implementation
  • Badge 3: Advanced Applications

Badges can be earned individually or as a series of three, and participants must complete assessments to earn each badge.

Badge 1 Module 1 will start on Sept. 15, followed by Badge 1 Module 2 on Oct. 20. Find more information here.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Greentown and partners name 10 startups to carbontech accelerator

new cohort

The Carbon to Value Initiative (C2V Initiative)—a collaboration between Greentown Labs, NYU Tandon School of Engineering's Urban Future Lab and Fraunhofer USA—has announced 10 startup participants to join the fifth cohort of its carbontech accelerator.

The six-month accelerator aims to help cleantech startups advance their commercialization efforts through access to the C2V Initiative’s Carbontech Leadership Council (CLC). The invitation-only council consists of corporate and nonprofit leaders from organizations like Shell, TotalEnergies, XPRIZE, L’Oréal and others who “foster commercialization opportunities and identify avenues for technology validation, testing, and demonstration,” according to a release from Greentown

“The No. 1 reason startups engage with Greentown is to find customers, grow their businesses, and accelerate impact—and the Carbon to Value Initiative delivers exactly that,” Georgina Campbell Flatter, CEO of Greentown, said in a news release. “It’s a powerful example of how meaningful engagement between entrepreneurs and industry turns innovation into commercial traction.”

The C2V Initiative received more than 100 applications from 33 countries, representing a variety of carbontech innovations. The 10 startups chosen for the 2025 fifth cohort include:

  • Cambridge, Massachusetts-based Sora Fuel, which integrates direct-air capture with direct conversion of the captured carbon into syngas for production of sustainable aviation fuel
  • Brooklyn-based Arbon, which develops a humidity-swing carbon-capture solution by capturing CO₂ from the air or point-source without heat or pressure
  • New York-based Cella Mineral Storage, which works to develop subsurface mineralization technology with integrated software, enabling new ways to sequester CO2 underground
  • Germany-based ICODOS, which helps transform emissions into value through a point-source carbon capture and methanol synthesis process in a single, modularized system
  • Vancouver-based Lite-1, which uses advanced biomanufacturing processes to produce circular colourants for use in textiles, cosmetics and food
  • London-based Mission Zero Technologies, which has developed and deployed an electrified, direct-air carbon capture solution that employs both liquid-adsorption and electrochemical technologies
  • Kenya-based Octavia Carbon, which develops a solid-adsorption-based, direct-air carbon capture solution that utilizes geothermal heat
  • California-based Rushnu, which combines point-source carbon capture with chemical production, turning salt and CO2 into chlorine-based chemicals and minerals
  • Brooklyn-based Turnover Labs, which develops modular electrolyzers that transform raw, industrial CO2 emissions into chemical building blocks, without capture or purification
  • Ontario-based Universal Matter, which develops a Flash Joule Heating process that converts carbon waste such as end-of-life plastics, tires or industrial waste into graphene

The C2V Initiative is based on Greentown Go, Greentown’s open-innovation program. The C2V Initiative has supported 35 startups that have raised over $600 million in follow-on funding.

Read about the 2024 cohort here.

CenterPoint gets go-ahead for $2.9B upgrade of Houston grid

grid resiliency

Texas utility regulators have given the green light for Houston-based CenterPoint Energy to spend $2.9 billion on strengthening its Houston-area electric grid to better withstand extreme weather.

The cost of the plan is nearly $3 billion below what CenterPoint initially proposed to the Public Utility Commission of Texas.

In early 2025, CenterPoint unveiled a $5.75 billion plan to upgrade its Houston-area power system from 2026 through 2028. But the price tag dropped to $2.9 billion as part of a legal settlement between CenterPoint and cities in the utility’s service area.

Sometime after the first quarter of next year, CenterPoint customers in the Houston area will pay an extra $1 a month for the next three years to cover costs of the resiliency plan. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

CenterPoint says the plan is part of its “commitment to building the most resilient coastal grid in the country.”

A key to improving CenterPoint’s local grid will be stepping up management of high-risk vegetation (namely trees), which ranks as the leading cause of power outages in the Houston area. CenterPoint says it will “go above and beyond standard vegetation management by implementing an industry-leading three-year trim cycle,” clearing vegetation from thousands of miles of power lines.

The utility company says its plan aims to prevent Houston-area power outages in case of hurricanes, floods, extreme temperatures, tornadoes, wildfires, winter storms, and other extreme weather events.

CenterPoint says the plan will:

  • Improve systemwide resilience by 30 percent
  • Expand the grid’s power-generating capacity. The company expects power demand in the Houston area to grow 2 percent per year for the foreseeable future.
  • Save about $50 million per year on storm cleanup costs
  • Avoid outages for more than 500,000 customers in the event of a disaster like last year’s Hurricane Beryl
  • Provide 130,000 stronger, more storm-resilient utility poles
  • Put more than 50 percent of the power system underground
  • Rebuild or upgrade more than 2,200 transmission towers
  • Modernize 34,500 spans of underground cables

In the Energy Capital of the World, residents “expect and deserve an electric system that is safe, reliable, cost-effective, and resilient when they need it most. We’re determined to deliver just that,” Jason Wells, president and CEO of CenterPoint, said in January.

Solidec partners with Australian company for clean hydrogen peroxide pilot​

rare earth pilot

Solidec has partnered with Australia-based Lynas Rare Earth, an environmentally responsible producer of rare earth oxides and materials, to reduce emissions from hydrogen peroxide production.

The partnership marks a milestone for the Houston-based clean chemical manufacturing startup, as it would allow the company to accelerate the commercialization of its hydrogen peroxide generation technology, according to a news release.

"This collaboration is a major milestone for Solidec and a catalyst for sustainability in rare earths," Yang Xia, co-founder and CTO of Solidec, said in the release. "Solidec's technology can reduce the carbon footprint of hydrogen peroxide production by up to 90%. By combining our generators with the scale of a global leader in rare earths, we can contribute to a more secure, sustainable supply of critical minerals."

Through the partnership, Solidec will launch a pilot program of its autonomous, on-site generators at Lynas's facility in Australia. Solidec's generators extract molecules from water and air and convert them into carbon emission-free chemicals and fuels, like hydrogen peroxide. The generators also eliminate the need for transport, storage and permitting, making for a simpler, more efficient process for producing hydrogen peroxide than the traditional anthraquinone process.

"Hydrogen peroxide is essential to rare earth production, yet centralized manufacturing adds cost and complexity," Ryan DuChanois, co-founder and CEO of Solidec, added in the release. "By generating peroxide directly on-site, we're reinventing the chemical supply chain for efficiency, resilience, and sustainability."

The companies report that the pilot is expected to generate 10 tons of hydrogen peroxide per year.

If successful, the pilot would serve as a model for large-scale deployments of Solidec's generators across Lynas' operations—and would have major implications for the high-performance magnet, electric vehicles, wind turbine, and advanced electronics industries, which rely on rare earth elements.

"This partnership with Solidec is another milestone on the path to achieving our Towards 2030 vision," Luke Darbyshire, general manager of R&I at Lynas, added. "Working with Solidec allows us to establish transformative chemical supply pathways that align with our innovation efforts, while contributing to our broader vision for secure, sustainable rare earth supply chains."