Experts from the University of Houston are teaming up with the city on key sustainability efforts.

Researchers at the University of Houston are partnering with the Harris County Office of County Administration’s Sustainability Office, the Harris County Energy Management Team, and other county staff in an effort to develop a comprehensive baseline of energy use and energy-use intensity that will aim to reduce energy costs and emissions in county facilities.

Once fully established, the team will work on tracking progress and evaluating the effectiveness of energy-saving measures over time. They will begin to build the foundation for future programs aimed at maximizing savings, reducing energy consumption, and increasing the use of renewable energy sources in county operations.

Harris County energy managers, Glen Rhoden and Yas Ahmadi, will work with UH professionals, including:

  • Jian Shi, UH Cullen College of Engineering associate professor of engineering technology and electrical and computer engineering
  • Zhu Han, Moores professor of electrical and computer engineering
  • Xidan "Delia" Zhang, UH research intern

The group began collaborating a year ago, and analyzed energy consumption data from county facilities.They were able to successfully identify key summertime energy-saving opportunities and completed retro-commissioning of four county buildings. Those efforts saved over $230,000 annually in electricity costs.

“This project is a prime example of how impactful research at UH can be when applied to real-world challenges, delivering tangible benefits to both the environment and the communities we serve,” Shi says in a news release.

The team will plan to do additional building projects, which includes the development of solar energy and heat pump initiatives, building automation system upgrades, and LED lighting installations. The goal is to reduce electricity usage by at least 5 percent per year for county facilities by 2030 and cut greenhouse gas emissions by 50 percent over the next 5 years for county buildings.

“Addressing climate change and the energy transition requires a collaborative effort that is not only data-driven and action-oriented but also human-centric,” Shi adds. “It’s about more than just technology—it’s about improving the quality of life for Texans.”

The fresh funding will go toward advancing the company's Xeus HTS wire technology. Photo via metoxtech.com

Houston superconductor tech manufacturer raises $25M

money moves

A Houston company has closed its series B extension at $25 million.

MetOx International, which develops and manufactures high-temperature superconducting (HTS) wire, announced it closed a $25 million series B extension. Centaurus Capital, an energy-focused family office, and New System Ventures, a climate and energy transition-focused venture firm, led the round with participation from other investors.

"MetOx has developed a robust and highly scalable operation, and we are thrilled to partner with the Company as it enters this pivotal growth stage," says John Arnold, founder of Centaurus, in a news release. "The market for HTS is expanding at an unprecedented pace, with demand for HTS far outweighing supply. MetOx is poised to be the leading U.S. HTS producer, closing the supply gap and bringing dramatic capacity to high power innovations and applications. Their progress and potential are unmatched in the field, and we are proud to support their growth."

The fresh funding will go toward advancing the company's Xeus HTS wire technology for key energy transition applications by expanding MetOx's U.S.-based manufacturing capabilities to meet demand.

"This funding marks a pivotal step in our mission to revolutionize the energy and technology sectors with our advanced power delivery technology and accelerate delivery for our customers and partners. HTS is critical to enhancing the efficiency of our electric grid and enabling technological developments that, in many cases, would not be viable or even possible without superconductor technology," adds Bud Vos, CEO of MetOx. "Support from investors such as Centaurus and NSV not only provides the financial resources and strategic support required for accelerated scaleup, but also validates the broad reach of our technology across energy, data center, medical, and defense industries."

HTS wire technology is critical for the energy transition, especially amid rising data center growth, and for next generation wind turbines and interconnections.

MetOx's technology originated out of the University of Houston and was founded in 1998 by Alex Ignatiev, UH professor emeritus of physics and a fellow of the National Academy of Inventors. Last year, the company secured $3 million in funding from the U.S. Department of Energy to support the advancement of its proprietary manufacturing technology for its HTS wire.

"MetOx's HTS technology aligns with our systems-level research and offers a unique opportunity to dramatically accelerate the energy transition," says Ian Samuels, founder and managing partner at NSV. "MetOx's Xeus wire stands to be a force multiplier in clean energy generation and high-power transmission and distribution, enabling load growth and the deployment of power-dense data centers. NSV is excited to support MetOx as it scales domestic manufacturing capacity."

———

This article originally ran on InnovationMap.

University of Houston professor Xiaonan Shan and the rest of his research team are celebrating fresh funding from a federal grant. Photo via UH.edu

Houston scientists land $1M NSF funding for AI-powered clean energy project

A team of scientists from the University of Houston, in collaboration with Howard University in Washington D.C., has received a $1 million award from the National Science Foundation for a project that aims to automate the discovery of new clean-energy catalysts.

The project, dubbed "Multidisciplinary High-Performance Computing and Artificial Intelligence Enabled Catalyst Design for Micro-Plasma Technologies in Clean Energy Transition," aims to use machine learning and AI to improve the efficiency of catalysts in hydrogen generation, carbon capture and energy storage, according to UH.

“This research directly contributes to these global challenges,” Jiefu Chen, the principal investigator of the project and associate professor of electrical and computer engineering, said in a statement. “This interdisciplinary effort ensures comprehensive and innovative solutions to complex problems.”

Chen is joined by Lars Grabow, professor of chemical and biomolecular engineering; Xiaonan Shan, associate professor of electrical and computing engineering; and Xuquing Wu, associate professor of information science technology. Su Yan, an associate professor of electrical engineering and computer science at Howard University, is collaborating on the project.

The University of Houston team: Xiaonan Shan, associate professor electrical and computing engineering, Jiefu Chen, associate professor of electrical and computer engineering, Lars Grabow, professor of chemical and biomolecular engineering, and Xuquing Wu, associate professor of information science technology. Photo via UH.edu

The team will create a robotic synthesis and testing facility that will automate the experimental testing and verification process of the catalyst design process, which traditionally is slow-going. It will implement AI and advanced, unsupervised machine learning techniques, and have a special focus on plasma reactions.

The project has four main focuses, according to UH.

  1. Using machine learning to discover materials for plasma-assisted catalytic reactions
  2. Developing a model to simulate complex interactions to better understand microwave-plasma-assisted heating
  3. Designing catalysts supports for efficient microwave-assisted reactions
  4. Developing a bench scale reactor to demonstrate the efficiency of the catalysts support system

Additionally, the team will put the funding toward the development of a multidisciplinary research and education program that will train students on using machine learning for topics like computational catalysis, applied electromagnetics and material synthesis. The team is also looking to partner with industry on related projects.

“This project will help create a knowledgeable and skilled workforce capable of addressing critical challenges in the clean energy transition,” Grabow added in a statement. “Moreover, this interdisciplinary project is going to be transformative in that it advances insights and knowledge that will lead to tangible economic impact in the not-too-far future.”

This spring, UH launched a new micro-credential course focused on other applications for AI and robotics in the energy industry.

Around the same time, Microsoft's famous renowned co-founder Bill Gates spoke at CERAWeek to a standing-room-only crowd on the future of the industry. Also founder of Breakthrough Energy, Gates addressed the topic of AI.

The University of Houston has joined the Energy Storage Research Alliance, one of two DOE-backed energy innovation hubs. Photo via Getty Images

University of Houston selected for DOE-backed energy storage innovation initiative

tapping in

The University of Houston was selected for a new energy storage initiative from the United States Department of Energy.

UH is part of the Energy Storage Research Alliance (ESRA), which is one of the two energy innovation hubs that the DOE is creating with $125 million. The DOE will provide up to $62.5 million in ESRA funding over a span of five years.

“To fuel innovation and cultivate a sustainable and equitable energy future, all universities, government entities, industry and community partners have to work together,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, says in a news release. “No one person or entity can achieve all this by themselves. As the Energy University and a Carnegie-designated Tier One research university, located in Houston — a center of diverse talent and experience from across the energy industry — UH has a unique advantage of continuing to build on Houston’s global leadership and demonstrating solutions at scale.

The hubs will attempt to address battery challenges and encourage next-generation innovation, which include safety, high-energy density and long-duration batteries. The batteries will be made from inexpensive, abundant materials, per the release.

The work that will be done at ESRA and other hubs can optimize renewable energy usage, reduce emissions, enhance grid reliability, and assist in growing electric transportation, and other clean energy solutions.

ESRA will bring in 50 researchers from three national laboratories and 12 other universities, including UH. The deputy lead of the soft matter scientific thrust and the principal investigator for UH’s portion of the project will be Yan Yao. Yao is the Hugh Roy and Lillie Cranz Cullen Distinguished Professor at the UH Cullen College of Engineering and principal investigator at the Texas Center for Superconductivity.

UH professor Yan Yao will lead the school's participation in the program. Photo via UH.edu

ESRA will focus on three interconnected scientific thrusts and how they work together: liquids, soft matter, and condensed matter phases. Yao and his team have created next-generation batteries using low-cost organic materials. The team previously used quinones that can be synthesized from plants and food like soybeans to increase energy density, electrochemical stability and safety in the cathode. Yao’s team were the first to make solid-state sodium batteries by using multi-electron conformal organic cathodes. The cathodes had a demonstrated record of recharging stability of 500 charging cycles.

Robert A. Welch Assistant Professor of electrical and computer engineering at UH Pieremanuele Canepa, will serve as co-PI. Both will investigate phase transitions in multi-electron redox materials and conformable cathodes to enable solid-state batteries by “marrying Yao’s experimental lab work with Canepa’s expertise in computational material science,” according to the release.

Joe Powell, founding director of the UH Energy Transition Institute and a professor in the Department of Chemical and Biomolecular Engineering, will create a community benefit plan and develop an energy equity course.

“New energy infrastructure and systems can have benefits and burdens for communities,” Powell says in the release. “Understanding potential issues and partnering to develop best solutions is critical. We want everyone to be able to participate in the new energy economy and benefit from clean energy solutions.”

This project will be led by Argonne National Laboratory and co-led by Lawrence Berkeley National Laboratory and Pacific Northwest National Laboratory.

“This is a once in a lifetime opportunity,” adds Yao. “To collaborate with world-class experts to understand and develop new science and make discoveries that will lead to the next generation of batteries and energy storage concepts, and potentially game changing devices is exciting. It’s also a great opportunity for our students to learn from and work with top scientists in the country and be part of cutting-edge research.”

Houston is playing host to a ton of energy and climate-focused events next month. Photo courtesy of the Ion

Roundup: Navigating Houston's two September climate-focused weeks

where to be

Two separate weeks of climate and energy-focused weeks are organizing events and programming during the second week of September — here's what all to consider attending.

Find out more information about each week online:

Kickoff events

Both groups will host kickoff events on Monday, September 9:

  • Houston Energy and Climate Week's morning opening ceremonies at the University of Houston begins at 7 am with a breakfast and, following a handful of panels and keynotes, will conclude at 1 pm after a luncheon. More details.
  • The Ion is hosting Houston Energy and Climate Startup Week's kickoff panel and block party, which begins at 3:30 pm and concludes at 8 pm. More details.

Prime networking

Attending just to make the right connections — perhaps over a beverage or two? Here's where to do it.

The University of Houston's new hydrogen program selected an Houston executive's team as the top project of the course. Photo via Getty Images

Houston energy leader wins hydrogen program's competition

top project

An executive from Houston-based SCS Technologies is celebrating a win from his time at the University of Houston Hydrogen Economy Program.

Cody Johnson, CEO of SCS Technologies, a provider of CO2 measurement systems, petroleum LACT units, and methane vapor recovery units, was on the winning 2024 Spring Capstone Project team for the UH program with the project, "Business Roadmap for Utilizing Hydrogen in Houston." The presentation outlined possible profits of $1.8 billion over the contract life with $180 million in green H2 investments.

The winning capstone project demonstrated the implementation of decarbonization processes. It included the enhancement of “capacity utilization in existing industrial hydrogen production along the Houston Ship Channel through amine capture technology,” according to a news release.

The team also identified business opportunities in producing ammonia as a liquid carrier by using the Haber-Bosch process that would leverage maritime ammonia tanker fleets to ship to Western Europe and Northeast Asia markets.

"It was an honor to collaborate with my Hydrogen Economy Program teammates to explore business opportunities using existing technologies to produce clean hydrogen and reinvest profits to further advance decarbonization efforts in the future," Johnson says in a news release. "I extend my gratitude to the University of Houston for assembling top-notch resources on the critical topic of clean hydrogen production. By bringing together students, corporate leaders, engineers, and scientists, we are able to join forces to accelerate the renewable hydrogen economy."

Cody Johnson is the CEO of SCS Technologies, a provider of CO2 measurement systems, petroleum LACT units, and methane vapor recovery units. Photo courtesy of SCS

UH’s Hydrogen Economy Program helps energy professionals and students strategically at the world’s energy hub in the Houston area. The program provides a forum for information from faculty and industry leaders. Participants in the University of Houston Hydrogen Economy Program can develop a capstone project by using knowledge from the completed course and then present a business plan for a clean hydrogen start-up venture. The projects were evaluated by a panel of judges after class presentations.

"At the University of Houston, we are committed to advancing the energy transition by bringing diverse skills and knowledge together," Alan Rossiter, executive director of external relations and educational program development for UH Energy, says in a news release. "The Hydrogen Economy Program is one of the many ways we achieve this. With the new cohort beginning in August and registration now open, we look forward to working with a new group of passionate, curious, and intelligent energy professionals and students."

The Hydrogen Economy is a part of UH Energy's Sustainable Energy Development portfolio. The Hydrogen Economy Program is a joint effort by UH and the American Institute of Chemical Engineers.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based NRG Energy exits renewables group to Texas real estate company

M&A Moves

NRG Energy, headquartered in Houston, has sold its renewable advisory group to Dallas-based commercial real estate services powerhouse CBRE. Financial terms weren’t disclosed.

The advisory group, led by Miro Sutton, brokers renewable energy deals, such as community- and utility-scale transactions, and advises clients on handling tax credits for renewable energy projects. The team works primarily with Fortune 500 companies.

Sutton joined CBRE as head of renewables and energy after overseeing the NRG advisory group. The group has arranged deals involving more than 5,000 megawatts of clean power.

“CBRE targeted this specific advisory team because of their unique approach to renewable procurement and expansive coverage of renewable offerings. They have enabled hundreds of projects and thousands of [megawatts] through their innovative contract structures that reduce risk and enhance economics for their customers,” Robert Bernard, CBRE’s chief sustainability officer, told Utility Dive.

In a news release, Bernard says market demand for renewable energy continues to grow rapidly as companies seek to meet their net-zero goals and other energy-related commitments.

“However, integrating renewable energy into a company’s real estate can be a complex process,” Bernard adds. “This acquisition enables CBRE to offer a wide range of energy-related sustainability services to all our clients, both occupiers and investors, and help them simplify the complexity associated with planning, sourcing and managing renewable energy.”

Oxy, other hardtech-focused organizations take up leases in Houston innovation hub

moving in

The Ion in Midtown has some new tenants taking up residence in its 90 percent-leased building.

Occidental Petroleum Corporation, Fathom Fund, and Activate are the latest additions to the Ion, according to a news release from Rice University and the Rice Real Estate Company, which own and operate the 16-acre Ion District where the Ion is located. With the additions, the building has just 10 percent left up for grabs.

“As the Ion continues to attract leading companies and organizations across industries, it’s clear that our vision of creating a dynamic and collaborative environment for innovation is resonating,” Ken Jett, president of the Rice Real Estate Company and vice president of facilities and capital planning at Rice, says in the release. “We are proud to set the standard for how the workplace can evolve to foster the commercialization and growth of transformative technologies that enhance quality of life in our community and beyond.”

Oxy, which was named a corporate partner of the Ion last year, now has nearly 6,500 square feet on the fourth floor where it will be housing its Zero In department that's focused on pioneering low-carbon initiatives. The build out process is slated to be completed by early 2025.

While Oxy represents the corporate side of innovation, the other two additions have their own roles in the innovation arena. Houston-based Fathom Fund, which launched its $100 million fund earlier this year, is targeting deep-tech venture opportunities and is led by Managing Partners Paul Sheng and Eric Bielke.

Founded in Berkeley, California, Activate, which announced its expansion into Houston in 2023, has officially named its local office in the Ion. The hardtech-focused incubator program recently named its inaugural cohort and opened applications for the 2025 program.

Other recent joiners to the Ion includes Kongsberg Digital, Artemis Energy Partners, CES Renewables, and Eleox.

“The partnerships we’ve forged are vital to shaping the Ion into a vibrant ecosystem for startups, where collaborative innovation is not only driving local economic growth but also positioning Houston as a global leader in the energy transition,” Paul Cherukuri, chief innovation officer at Rice University, says. “With our team leading the programming and activation across the Ion district, we are creating companies that harness cutting-edge technology for the benefit of society—advancing solutions that contribute to social good while addressing the most pressing challenges of our time. This powerful network is redefining Houston’s role in the future of energy, technology, and social impact.”

———

This article originally ran on InnovationMap.

Things to know: How Houston can use existing industry amid energy transition, events not to miss, and more

taking notes

Editor's note: Dive headfirst into the new week with three quick things to catch up on in Houston's energy transition.

Events not to miss

Put these Houston-area energy-related events on your calendar.

  • Connecting the Houston energy tech and climate community, Greentown Houston's Climatetech Summit will take place at its Midtown location on October 22.
  • The University of Houston is co-hosting the 2024 EGI & University of Houston Joint Technical Conference on October 24.
  • Ally Energy's GRIT Awards will honor energy leaders and best workplaces on October 30.
  • Taking place in Downtown Houston November 19 to 20, the Global Clean Hydrogen Summit will provide project developers, buyers, and financiers with the information they need to establish winning strategies for global clean hydrogen markets.

Big deal: Dallas-area business to acquire Houston renewable energy co.

Houston renewables company Proteus Power is getting acquired. Photo via

Houston-based developer of utility-scale renewable energy Proteus Power is being acquired by JBB Advanced Technologies for an undisclosed amount after founder, chairman, and CEO, John B. Billingsley signed a letter of intent to purchase.

"I know the potential of renewable energy, both for our country and for the small landowners and communities we work with," Billingsley says in a news release. "Proteus Power is just the type of company I have known and grown in the past, and we're perfectly positioned to make it a very profitable company for our investors. In the near term, this very substantial business will provide a multi-billion-dollar boost to the Texas economy, from Lubbock to Midland, across West Texas and down to the Gulf Coast."

Proteus Power currently incorporates a total of 15.5 gigawatts of utility-scale renewable energy projects, which include utility-scale solar and battery energy storage systems. Nearly 5 gigawatts of both utility-scale solar and battery energy storage should be developed at an estimated EPC (Engineering, Procurement, and Construction) cost of $3.38 billion over the next four years. Continue reading.

Expert voice: Repurposing Houston’s infrastructure for a clean energy future

Houston’s journey towards a clean energy future is a testament to the power of innovation and adaptability. Photo via Getty Images

Houston, often dubbed the “Energy Capital of the World,” is at a pivotal moment in its history. Known for its vast oil and gas reserves, the city is now embracing a new role as a leader in the clean energy transition. This shift is not just about adopting new technologies but also about creatively repurposing existing infrastructure to support sustainable energy solutions.

Houston’s offshore oil wells, many of which are old or abandoned, present a significant opportunity for carbon capture. By repurposing these wells, we can sequester carbon dioxide, reducing greenhouse gas emissions and mitigating climate change. This approach not only utilizes existing infrastructure but also provides a cost-effective solution for carbon management. According to the Greater Houston Partnership, initiatives like these are crucial as Houston aims to lower its climate-changing greenhouse gas emissions. Exxon estimates that just their proposed CCS hub could capture and store 50 million metric tons of CO2 annually by 2030 and 100 million metric tons by 2040. Continue reading the article by Tershara Mathews, national offshore wind lead at WSP.