The program will allow students to learn at their own pace, and is supported seven days a week by tutorial and technical staff, and offers flexible payment options with a low initial registration fee. Photo via UH

University of Houston-Downtown announced a new Wind Turbine Technician Certificate Program.

UHD’s goal with the new program is to address the global need for workers skilled in servicing, diagnosing, repairing and installing wind turbines and other associated equipment.

The program will allow students to learn at their own pace, and is supported seven days a week by tutorial and technical staff, and offers flexible payment options with a low initial registration fee.

Some courses can be purchased as students work through them.The total cost is $1,750 for the entire program.

The course will be delivered in partnership with George Brown College in Toronto. George Brown College is a leader in distance learning, and one program highlight will be its 3D interactive wind turbine simulator. The wind turbine simulator will have key features like real-time visualization, interactive operation, pre-built lab projects, and Pitch and Yaw Ladder Logic applications, which shows how Programmable Logic Controllers (PLCs) are used to provide automatic control of wind turbines.

“The programs we develop at George Brown College feature robust technical simulation software so we can reach different students, like those looking to diversify their skills and can’t attend full time because of family or work commitments,” Colin Simpson, dean of continuous learning, says in a news release. “Additionally, our partnership with University of Houston-Downtown allows us to extend our reach to help train the U.S. clean energy workforce.”

According to Global Wind Energy Council’s Global Wind Report 2023, over half a million new wind technicians will be needed by 2026 to service the expected capacity increases, as wind generation is expected to more than double by 2030. Texas produces 26 percent of all U.S. wind-sourced electricity.

“Wind energy is one of the fastest-growing energy sources in the world, and as the largest wind producer in the United States, there is a growing need for skilled technicians in Texas,” UHD President Loren J. Blanchard adds. “By partnering with George Brown College, we’re able to leverage a unique online program to develop a skilled workforce for the wind energy sector in the state and beyond.”

Debalina Sengupta has been named as the chief operating officer of UH's Energy Transition Institute. Photo via UH.edu

University of Houston names new energy transition-focused executive

leading the way

The University of Houston has named a new C-level executive to its energy transition-focused initiative.

Debalina Sengupta has been named as the chief operating officer of UH's Energy Transition Institute, which was established in 2022 by a $10 million commitment from Shell USA Inc. and Shell Global Solutions (US) Inc. The institute focuses on hydrogen, carbon management and circular plastics and works closely with UH’s Hewlett Packard Enterprise Data Science Institute and researchers across the university.

Sengupta, who was previously a chemical engineer with over 18 years of experience with sustainability and resilience issues, was called to ETI’s mission and its focus on Houston, which is home to more than 4,500 energy companies and a pivotal international oil and gas hub.

“UH Energy Transition Institute is the first of its kind Institute setup in Texas that focuses solely on the transition of energy,” she says in a news release. “A two-way communication between the academic community and various stakeholders is necessary to implement the transition and I saw the UH ETI role enabling me to achieve this critical goal.”

Originally from India, where she saw first-hand the impact of natural disasters, she has been working with Texas coastal communities over the past two years to not help bring coastal resilience projects along the coast. The Texas coast will serve potentially as an economic development zone for several energy transition projects.

“It is necessary that we think deeply about sustainability quantification for our energy systems, diversify and expand from fossil to non-fossil resources, and understand how it can impact our future generations,” Sengupta continues. “This requires rigorous training and adopting new technologies that will enable the change, and I am dedicated to work towards this goal for UH ETI.”

Sengupta has also worked as a postdoctoral research fellow in the U.S. Environmental Protection Agency. She has a bachelor’s degree in chemical engineering from Jadavpur University in India and a doctorate from Louisiana State University with a focus on process systems engineering. Sengupta previously was at Texas A&M University where she was the Coastal Resilience Program director for Texas Sea Grant,which is a federal-state partnership program funded by the U.S. Department of Commerce National Oceanic and Atmospheric Administration. She has served as the associate director of the Texas A&M Engineering Experiment Station’s Gas and Fuels Research Center; coordinator of the Water, Energy and Food Nexus at Texas A&M Energy Institute; and lecturer at the Artie McFerrin Department of Chemical Engineering.

The ETI has helped catalyze “cross-disciplinary cooperation” to expand funding opportunities for UH faculty, which includes direct funding of over 24 projects via seed grants. As the new COO, Sengupta will work alongside founding executive director of the institute, Joe Powell, their executive team and the ETI advisory board to develop and implement strategic plans. Her position is partially funded by a $500,000 grant from the Houston-based Cullen Foundation.

“We are excited to have Dr. Sengupta join us at UH to help drive the Energy Transition Institute to fulfill its mission in educating students, expanding top-tier research, and providing thought leadership in sustainable energy and chemicals for the Houston area and beyond,” Powell adds. “Dr. Sengupta brings a strong background and network in collaborating with academic, community, governmental and industry partners to build the coalitions needed for success.”

The two companies will work closely with UH's Repurposing Offshore Infrastructure for Clean Energy Project Collaborative, or the ROICE project. Photo via UH.edu

UH to explore repurposing offshore tech for clean energy with new partnership

teaming up

The University of Houston has signed a memorandum of understanding with two Houston-based companies that aims to repurpose offshore infrastructure for the energy transition.

The partnership with Promethean Energy and Endeavor Management ensures that the two companies will work closely with UH's Repurposing Offshore Infrastructure for Clean Energy Project Collaborative, or the ROICE project. The collaborative is supported by about 40 institutions to address the economic and technical challenges behind repurposing offshore wells, according to a statement from UH. It's funded in part by the Department of the Treasury through the State of Texas.

“These MOUs formalize our mutual commitment to advance the industry's implementation of energy transition strategies,” Ram Seetharam, Energy Center officer and ROICE program lead, said in the statement. “Together, we aim to create impactful solutions that will benefit both the energy sector and society as a whole.”

UH announced the partnership last week. Photo via UH.edu

Promethean Energy develops, produces, and decommissions mature assets in a cost-effective and environmentally sustainable manner. It began working on the temporary abandonment of nine wells located in the Matagorda Island lease area in the Gulf of Mexico earlier this year.

According to Clint Boman, senior vice president of operations at Promethean, it is slated to become the first ROICE operator of a repurposed oil and gas facility in the Gulf of Mexico.

"Promethean Energy is focused on being the best, last steward of offshore oil and gas production assets, and our strategy is fully aligned with an orderly energy transition,” Borman said in the statement.

Endeavor Management is a consulting firm that works in several industries, including oil and gas, industrial service, transportation, technology and more.

“Our collaboration for this ROICE phase and with the RPC will blend our offshore operations expertise, our years of experience addressing evolving regulatory requirements with our decades of creating innovative commercial enterprises to meet the demands of energy transition” John McKeever, chief growth officer of Endeavor Management, said in the statement. “Together, we will create the blueprint that drives real business impact with the application of clean energy principles.”

The new partnerships will help foster ROICE's second phase. The first was focused on research and reports on how to implement ROICE projects, with the latest published earlier this month. This second phase will focus on innovation and implementation frameworks.

Additionally, at the signing of the MOU, ROICE revealed its new logo that features an oil and gas platform that's been transformed to feature wind turbines, a hydrogen tank and other symbols of the energy transition.

This spring, UH signed a memorandum of understanding with Heriot-Watt University in Scotland to focus on hydrogen energy solutions. The following month, Rice University announced it had inked a strategic partnership agreement with Université Paris Sciences & Lettres to collaborate on "fields of energy and climate," among other pressing issues. Click here to read more.

ReVolt Battery Technology Corp. is based out of the University of Houston Innovation Center. Photo via revoltbatterytechnology.com

Houston SaaS startup on a mission of decarbonizing public transportation secures SBIR grant

seeing green

A Houston company that's electrifying public transportation secured a SBIR Phase 1 award from the Department of Transportation.

ReVolt Battery Technology Corp., software-as-a-service company based out of the University of Houston Innovation Center, received the award. The company did not disclose the monetary value of the funding, but indicated that the grant will support ReVolt's "research on reducing auxiliary power consumption in battery electric buses," according to a statement from the company.

"ReVolt stands out as one of only 23 small businesses across the United States to be selected in this highly competitive process, which focuses on creating innovative infrastructure for safe and secure transportation," reads the statement.

The company's software technology platform consists of charging infrastructure, electric vehicle scheduling, fleet digital twin, and greenhouse gas reduction and estimation.

The company was founded in 2021 by Jan Naidu and, according to Crunchbase, has raised $200,000 in pre-seed funding.

Switching fully to electric vehicles could prevent 157 premature deaths each month in Houston. Photo courtesy

New Houston study shows health impacts of full vehicle electrification in major U.S. cities

what could be

A new study from the University of Houston shows that there's no one-size-fits-all strategy for full vehicle electrification in America's largest U.S. cities.

The study by Ali Mousavinezhad and Yunsoo Choi considered changes in air pollution, specifically PM2.5 and ozone levels, in Houston, Los Angeles, New York and Chicago under different electrification scenarios and how the changes could impact public health.

“Our findings indicate vehicle electrification generally contributes to reducing greenhouse gas emissions, improving air quality, and lowering the mortality rate associated with exposure to toxic air pollutants,” Mousavinezhad said in a statement.

However, Mousavinezhad and Choi found that full electrification in Los Angeles could have negative impacts on public health.

Switching fully to electric vehicles could prevent 157 premature deaths each month in Houston, 796 deaths in New York and 328 in Chicago, according to the study. But in Los Angeles, full electrification would increase mortality.

Additionally, full electrification would save between $51 million to $249 million per day for New York, Chicago, and Houston in health-related costs. But Los Angeles would face economic losses of up to $18 million per day.

This was largely due to the unique weather and geography in Los Angeles that can trap air pollutants that harm the lungs. The study found that full electrification would lead to increases in PM2.5 and MDA8 ozone. According to UH, the study reveals the importance and "complexity of air quality management."

“The four largest U.S. cities have distinct anthropogenic sources of air pollutants and greenhouse gases, “Choi added. “Each city requires unique regulations or strategies, including different scenarios for the adoption of electric vehicles, to reduce concentrations of these pollutants and greenhouse gases effectively.”

Mousavinezhad, lead author, is a recent Ph.D. graduate from UH. Choi is a professor of atmospheric chemistry, AI deep learning, air quality modeling and satellite remote sensing. The study, titled “Air quality and health co-benefits of vehicle electrification and emission controls in the most populated United States urban hubs: insights from New York, Los Angeles, Chicago and Houston,” was published in the journal Science of the Total Environment earlier this year.

Earlier this year, Texas ranked low in a study that looked at the closest EV charging stations equivalent to a trip to the gas station. However, another study showed that Texas is among the top of the pack for states with the most electric vehicle registrations, but Houston fell behind other large metros in the state for EV friendliness. Click here to read more about both reports.
The DOE program allows graduate students to work on research projects that address national and international energy, environmental, and nuclear challenges. Photo via UH.edu

Houston students selected for prestigious DOE program

rising stars

Three rising stars in the energy sector who are graduate students at the University of Houston have been chosen for a prestigious U.S. Department of Energy research program.

UH doctoral candidates Caleb Broodo, Leonard Jiang, and Farzana Likhi, are among 86 students from 31 states who were selected for the Office of Science Graduate Student Research program, which provides training at Department of Energy (DOE) labs.

“This recognition is a testament to their hard work and dedication to pushing the boundaries of science, and to our commitment to fostering excellence in research and innovation,” Sarah Larsen, vice provost and dean of the UH’s graduate school, says in a news release.

The DOE program allows graduate students to work on research projects that address national and international energy, environmental, and nuclear challenges.

The program “is a unique opportunity for graduate students to complete their Ph.D. training with teams of world-class experts aiming to answer some of the most challenging problems in fundamental science,” says Harriet Kung, acting director of DOE’s Office of Science. “Gaining access to cutting-edge tools for scientific discovery at DOE national laboratories will be instrumental in preparing the next generation of scientific leaders.”

Here’s a rundown of the UH trio’s involvement in the DOE program:

  • Broodo, a second-year Ph.D. candidate whose research focuses on heavy ion nuclear physics, will work at Brookhaven National Laboratory in New York.
  • Jiang, a third-year Ph.D. candidate in materials science and engineering, will head to Argonne National Laboratory in Illinois to research electrochemistry.
  • Likhi, a fourth-year Ph.D. candidate in the materials science and engineering program, will conduct research on microelectronics at Oak Ridge Laboratory in Tennessee.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Power grid tech co. with Houston HQ raises $25M series B

money moves

A Norway-based provider of technology for power grids whose U.S. headquarters is in Houston has raised a $25 million series B round of funding.

The venture capital arm of Polish energy giant Orlen, Norwegian cleantech fund NRP Zero, and the Norway-based Steinsvik Family Office co-led Heimdall Energy's round. Existing investors, including Investinor, Ebony, Hafslund, Lyse, and Sarsia Seed, chipped in $8.5 million of the $25 million round.

“This funding gives us fuel to grow internationally, as we continue to build our organization with the best people and industry experts in the world,” Jørgen Festervoll, CEO of Heimdall, says in a news release.

Founded in 2016, Heimdall supplies software and sensors for monitoring overhead power lines. The company says its technology can generate up to 40 percent in additional transmission capacity from existing power lines.

Heimdall entered the U.S. market in 2023 with the opening of its Houston office after operating for several years in the European market.

“Heimdall Power has built itself a unique position as an enabler for the ongoing energy transition, with fast-increasing electricity demand and queues of renewables waiting to get connected,” says Marek Garniewski, president of Orlen’s VC fund.

Heimdall says it will put the fresh funding toward scaling up production and installation of its “magic ball” sphere-shaped sensors. In the U.S., these sensors help operators of power grids maximize the capacity of the aging power infrastructure.

“In the United States alone, there are over 500,000 miles of power lines — most of which have a far higher transmission capacity than grid operators have historically been able to realize. To increase capacity, many have launched large-scale and expensive infrastructure projects,” Heimdall says.

Now, the U.S. government has stepped in to ensure that utilities are gaining more capacity from the existing infrastructure, aiming to upgrade 100,000 miles of transmission lines over the next five years.

Heimdall's technology enables grid operators and utilities to boost transmission capacity without undertaking lengthy, costly infrastructure projects. Earlier this year, the company kicked off the largest grid optimization project in the U.S. with Minnesota-based Great River Energy.

———

This article originally ran on InnovationMap.

Houston-area company specializing in creating clean campuses announces new data center project

coming soon

A California AI infrastructure company has announced it's building a 200 megawatt data center in Texas and will work with The Woodlands-based Lancium, a decarbonization-focused energy technology company.

Crusoe Energy Systems LLC announced its plans to build the 200 MW data center at the Lancium Clean Campus outside Abilene, Texas. The two companies will work to bring the data center online in the coming months, reports Lancium in a news release. Once completed, the first phase will enable AI workloads at scale across 1.2 gigawatts of power capacity.

“Lancium’s mission to decarbonize compute for the most energy-intensive workloads and this scale and type of data center is game-changing,” Michael McNamara, co-founder and CEO of Lancium, says in the release. “Our energy management expertise, the integration of incremental storage and solar generation resources behind-the-meter at the campus, and Crusoe’s design approach will combine to deliver the maximum amount of green energy at the lowest possible cost, while bringing significant benefits to the Abilene community.”

Lancium's role will include "land acquisition, power interconnect, site engineering, renewables interconnect, and power orchestration," per the release. Crusoe will own and develop the data center, which is expected to go online in 2025.

“Data centers are rapidly evolving to support modern AI workloads, requiring new levels of high density rack space, direct-to-chip liquid cooling and unprecedented overall energy demands. We’ve designed this data center to enable the largest clusters of GPUs in the world to drive new breakthroughs in AI,” adds Chase Lochmiller, Crusoe’s co-founder and CEO. “Given its leadership in renewable energy and plans for the site, working with Lancium in Abilene presents a unique opportunity to sustainably power the future of AI and we’re thrilled to have the support of the city in this ambitious endeavor.”

According to the release, the project will feature direct-to-chip liquid cooling or rear-door heat exchangers and will be flexible enough to include air cooling. Once completed, each building within the data center will be able to operate up to 100,000 GPUs on a single integrated network fabric, according to the companies.

Lancium has raised $150 million since its founding in 2017, according to Crunchbase. Investors include Hanwha Solutions and SBI Group.