coming soon

Houston university launches latest micro-credential course focused on AI, robotics for the energy industry

The new course will provide participants with insights on how to use robotics to enhance efficiency in data collection, AI data analysis tools for industry, risk management with AI, and more. Photo courtesy of UH

The University of Houston will launch its latest micro-credential course next month that focuses on how AI and robotics can be used in inspection processes for the energy industry.

Running from March 22 through April 22, the course is open to "engineers, technicians and industry professionals with advanced knowledge in the dynamic fields of robotics and AI," according to a statement from UH. It will combine weekly online lectures and in-person hands-on demonstrations and provide participants with insights on how to use robotics to enhance efficiency in data collection, AI data analysis tools for industry, risk management with AI, and more.

“By blending theoretical knowledge with practical applications and hands-on experience, the course aims to empower participants with the skills needed to evaluate and adopt these advanced technologies to address real-world challenges in asset management,” Vedhus Hoskere, assistant professor at the UH Cullen College of Engineering, said in a statement. “We hope that upskilling and knowledge gained from this course will help accelerate the adoption of AI and robotics and contribute to the advancement of safer and more resource-efficient energy infrastructure systems.”

Hoskere will teach the course module titled “Computer Vision and Deep Learning for Inspections.” He also recently received a $500,000 grant from the Texas Department of Transportation (TxDOT) to look at how to use drones, cameras, sensors and AI to support Texas' bridge maintenance programs.

Other leaders of the UH Energy course will include:

  • Kimberley Hayes, founder of Valkim Technologies: Lead speaker who will provide an overview and introduction of AI applications, standards and certification
  • Gangbing Song, Moores Professor of Mechanical Engineering at UH: Machine learning hands-on exercises
  • Pete Peterson, head of product management and marketing with XaaS Lab: Computer vision technology in the oil and gas industry
  • Matthew Alberts, head of project management with Future Technologies Venture Venture LLC: Use cases, workflow and optimizing inspections with AI and drones
  • Suchet Bargoti, chief technology officer at Abyss Solutions: AI and robots for integrity management.

Registration accepted up to the first day of the course and can be completed online.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News