Neara’s AI-enabled simulation and analytics platform can help CenterPoint reduce customer outages and accelerate restoration efforts. Photo via Getty Images

CenterPoint Energy announced an agreement with Artificial Intelligence-powered infrastructure modeling platform Neara for engineering-grade simulations and analytics, and to deploy Neara’s AI capabilities across CenterPoint’s Greater Houston service area.

“We are thrilled to collaborate with CenterPoint as they lead the charge in addressing today’s most existential energy challenges,” Robert Brook, senior vice president and managing director of Neara Americas, says in a news release.

Neara’s AI-enabled simulation and analytics platform can help CenterPoint reduce customer outages and accelerate restoration efforts. The technology can support CenterPoint’s efforts to address higher-risk vegetation along power lines, and identify equipment upgrades. Upgrades can include pole replacements or reinforcements. The platform will help CenterPoint to prioritize “assets and locations where grid hardening improvements will help optimize system-wide benefit,” per the release.

"Our 3D digital modeling technology will help CenterPoint proactively reduce customer outages by simulating severe weather events, such as hurricanes, tropical storms, heat waves and flash floods, and their potential impact on the utility’s infrastructure,” Brook says in the release.

CenterPoint recently announced the ahead of schedule completion of core resiliency actions as part of the first phase of its Greater Houston Resiliency Initiative (GHRI). This included a series of targeted actions to improve the resiliency of CenterPoint Houston Electric's grid with a second phase of GHRI that will include strategic undergrounding, system hardening, self-healing grid technology and enhancements to the company's outage tracker. These efforts are all part of a longer-term resilience plan.

“Leveraging technology and AI to deliver better outcomes for our customers and communities is a significant part of the commitment we made after Hurricane Beryl,” adds CenterPoint President and CEO Jason Wells in a news release. “By simulating the potential impact of severe weather events on our infrastructure and customers, Neara’s platform and tools will inform our plans and actions before, during and after major weather events to help reduce the impact and duration of power outages. Understanding how weather scenarios and their risks could affect our operations will position us to be several steps ahead on our preparedness and response.”

In the wake of Hurricane Beryl, CenterPoint Energy announced its Greater Houston Resiliency Initiative. The initiative will include an “accelerated timeline to execute specific actions to strengthen electric infrastructure across Houston, and more than 40 critical actions in total to strengthen the electric grid, and improve the company's customer communications and emergency coordination before the next hurricane,” according to the company.

By prioritizing the deployment of smart, energy-efficient technologies, we can ensure that Houston remains at the forefront of the global energy landscape, setting the standard for other cities to follow. Photo via Getty Images

HVAC innovation has a huge role to play in Houston amid energy transition

Guest column

As Houston, the energy capital of the world, navigates the global energy transition, the city is uniquely positioned to lead by example. This transition isn’t just about shifting from fossil fuels to renewable energy; it’s about creating an ecosystem where corporations, research institutions, startups, and investors collaborate to develop and implement innovative technologies.

One of the most promising areas for reducing energy consumption and minimizing environmental impact is in heating, ventilation, and air conditioning, or HVAC, systems.

Houston’s intense weather patterns demand efficient and adaptable climate control solutions. Traditional HVAC systems, while effective in maintaining indoor comfort, often operate on fixed settings that don’t account for real-time changes in occupancy or weather. This results in energy waste and increased utility costs — issues that can be mitigated by integrating artificial intelligence into HVAC systems.

AI-driven HVAC systems offer a dynamic approach to heating and cooling, learning from user preferences and environmental conditions to optimize performance. These systems use advanced algorithms to continuously adjust their operation, ensuring that energy is used only when and where it’s needed. This results in up to 30 percent greater energy efficiency compared to conventional systems, translating into significant savings for consumers and a reduction in overall energy demand.

For a city like Houston, where energy consumption is a critical concern, the widespread adoption of AI-integrated HVAC systems could have a substantial impact. By optimizing energy use in homes, offices, and industrial spaces, these systems help reduce the strain on the electrical grid, particularly during peak usage times. Additionally, they contribute to lowering greenhouse gas emissions, aligning with Houston’s broader sustainability goals.

The potential of AI in HVAC systems extends beyond efficiency and environmental benefits. These systems enhance the user experience by offering precise control over indoor climates, adapting to individual preferences, and responding to external conditions in real-time. This level of customization not only improves comfort but also supports a smarter, more sustainable approach to energy management.

Houston’s energy transition requires the collective efforts of all sectors. While large corporations and government entities play a significant role, the contributions of startups, research institutions, and energy service companies are equally important. These entities are at the forefront of developing technologies that address both the economic and environmental challenges of our time. Investors are increasingly recognizing the value of funding solutions that offer long-term sustainability alongside financial returns, further driving the adoption of innovative energy technologies.

The integration of AI into HVAC systems represents a crucial step forward in this journey. As Houston continues to evolve as a leader in energy innovation, embracing advanced technologies like AI-driven HVAC systems will be key to achieving a more sustainable and resilient energy future. These systems are not just a technological advancement—they are a strategic tool in the broader effort to reduce energy consumption, lower emissions, and create a healthier environment for all.

At the heart of Houston’s energy transition is the commitment to building a future that balances growth with sustainability. By prioritizing the deployment of smart, energy-efficient technologies, we can ensure that Houston remains at the forefront of the global energy landscape, setting the standard for other cities to follow. As we move forward, the integration of AI into our energy infrastructure, particularly in HVAC systems, will be instrumental in shaping a sustainable and prosperous future for Houston and beyond.

———

Trevor Schick is the president of KOVA, a Texas company creating sustainable solutions in building development.

University of Houston professor Xiaonan Shan and the rest of his research team are celebrating fresh funding from a federal grant. Photo via UH.edu

Houston scientists land $1M NSF funding for AI-powered clean energy project

A team of scientists from the University of Houston, in collaboration with Howard University in Washington D.C., has received a $1 million award from the National Science Foundation for a project that aims to automate the discovery of new clean-energy catalysts.

The project, dubbed "Multidisciplinary High-Performance Computing and Artificial Intelligence Enabled Catalyst Design for Micro-Plasma Technologies in Clean Energy Transition," aims to use machine learning and AI to improve the efficiency of catalysts in hydrogen generation, carbon capture and energy storage, according to UH.

“This research directly contributes to these global challenges,” Jiefu Chen, the principal investigator of the project and associate professor of electrical and computer engineering, said in a statement. “This interdisciplinary effort ensures comprehensive and innovative solutions to complex problems.”

Chen is joined by Lars Grabow, professor of chemical and biomolecular engineering; Xiaonan Shan, associate professor of electrical and computing engineering; and Xuquing Wu, associate professor of information science technology. Su Yan, an associate professor of electrical engineering and computer science at Howard University, is collaborating on the project.

The University of Houston team: Xiaonan Shan, associate professor electrical and computing engineering, Jiefu Chen, associate professor of electrical and computer engineering, Lars Grabow, professor of chemical and biomolecular engineering, and Xuquing Wu, associate professor of information science technology. Photo via UH.edu

The team will create a robotic synthesis and testing facility that will automate the experimental testing and verification process of the catalyst design process, which traditionally is slow-going. It will implement AI and advanced, unsupervised machine learning techniques, and have a special focus on plasma reactions.

The project has four main focuses, according to UH.

  1. Using machine learning to discover materials for plasma-assisted catalytic reactions
  2. Developing a model to simulate complex interactions to better understand microwave-plasma-assisted heating
  3. Designing catalysts supports for efficient microwave-assisted reactions
  4. Developing a bench scale reactor to demonstrate the efficiency of the catalysts support system

Additionally, the team will put the funding toward the development of a multidisciplinary research and education program that will train students on using machine learning for topics like computational catalysis, applied electromagnetics and material synthesis. The team is also looking to partner with industry on related projects.

“This project will help create a knowledgeable and skilled workforce capable of addressing critical challenges in the clean energy transition,” Grabow added in a statement. “Moreover, this interdisciplinary project is going to be transformative in that it advances insights and knowledge that will lead to tangible economic impact in the not-too-far future.”

This spring, UH launched a new micro-credential course focused on other applications for AI and robotics in the energy industry.

Around the same time, Microsoft's famous renowned co-founder Bill Gates spoke at CERAWeek to a standing-room-only crowd on the future of the industry. Also founder of Breakthrough Energy, Gates addressed the topic of AI.

The agreement will enable bp and NASA to collaborate on an array of technologies. Photo courtesy of bp

NASA, bp team up to share digital tech, expertise with new agreement

collaboration station

Houston-based energy company bp America is helping NASA boost U.S. space exploration efforts.

Under an agreement signed August 7, bp and NASA will share digital technology and technical expertise developed over several decades. The energy company says the deal will help advance energy production on earth, and will help advance exploration of the moon, Mars, and other planets.

For example, the agreement will enable bp and NASA to collaborate on an array of technologies. This includes digital models and simulations that let engineers and scientists visualize equipment in remote locations more than 7,000 feet underwater or millions of miles away on another planet.

The bp-NASA partnership evolved thanks to the Space Act Agreement. This agreement, part of the National Aeronautics and Space Act of 1958, allows NASA to work with companies, universities, and other entities to propel space exploration.

In a news release, Ken Nguyen, principal technical program manager at bp, says: “bp has built a proud legacy of technological innovation as we deliver the energy the world needs today while investing in the energy system of tomorrow. As NASA pursues a sustained presence on the moon and Mars, we see a unique opportunity for bp and NASA to work collaboratively on the forefront of digital technology that will cultivate further innovation in energy and space.”

Initially, bp and NASA will focus on developing standards, and expanding the capabilities of visualization and simulation models. Subsequent phases might include:

  • Exchanging practices surrounding safety, communication, artificial intelligence, and other aspects of remote operations.
  • Collaborating on renewable energy, such as hydrogen, solar, regenerative fuel cells, and high-capacity batteries.

“Both bp and NASA are custodians of deep technical expertise, working in extreme environments — whether that’s at the bottom of the ocean or on the moon,” says Giovanni Cristofoli, senior vice president of bp Solutions. “Sharing what we know with each other will help us solve complex engineering problems faster, meaning we can focus on keeping energy flowing safely and delivering higher margins with lower emissions.”

This won’t be the first time bp and NASA have teamed up. Offshore workers from bp have undergone underwater escape training at NASA's Neutral Buoyancy Laboratory, the astronaut training pool near Johnson Space Center. In addition, NASA has used bp’s Castrol lubricants for more than 60 years.

Two companies with big presences in Houston are collaborating to provide hybrid intelligence with AI. Photo via Getty Images

European co. with Houston HQ enters into collaboration to accelerate AI in energy

team work

Two tech companies have teamed up to accelerate artificial intelligence adaption in the energy industry.

Houston-based Radix announced a strategic partnership with data and artificial intelligence company Cognite, a Norwegian company that's expanded to the U.S. by way of Houston, and will aim to implement AI "to streamline and contextualize data management and asset performance across oil and gas, energy, petrochemicals, and manufacturing industries,” according to a news release.

Radix is a global technology solutions company with expertise in engineering, data and software technology, and operations. The partnership allows Radix to utilize Cognite’s Industrial DataOps platform, and Cognite Data Fusion. The combination of Cognite Data Fusion’s innovative technology and Radix’s engineering intelligence will aim to tackle the problem of extracting information from large data pools in non-integrated systems.

According to Radix, the utilization of hybrid intelligence with AI to sort through data in a more refined manner, companies will be able to more intelligently isolate problem areas and work on solutions. This will help with energy optimization, mass balance for production accounting, and inventory management for critical materials according to Radix. Hybrid intelligence can also help accelerate access to data across various independent systems.

“Our partnership with Cognite has shown that we can bring our unique expertise together to empower companies with the hybrid intelligent tools they need to get to the data that becomes valuable and actionable information," Global Head of Alliances & Practices at Radix Flavio Guimarães says in a news release. “With Cognite Data Fusion, we help businesses streamline their data, thus helping to boost decision-making with real-time insights and drive cost reductions across the organization.”

With Cognite Data Fusionn’s solutions aim to enhance scalability, usability, and overall value for users and businesses, in what Radix has called an Industrial Applications Library. Some solutions will be showcased from October 14-15 at Cognite Impact 2024 in Houston, which will include an operational view on actionable insights, improvement workflows for field process, improvements and operational efficiency, OEE monitoring and control, preventative insights for monitoring.

“The Industrial Applications Library creates added value to the digital transformation journey helping companies to achieve optimal operational excellence and significant cost savings for our customers," Trudi Hable, head of strategic alliances for North America at Radix, adds. “Radix’s expertise and intelligence will ensure that real-time information is being relayed to Cognite Data Fusion in an efficient manner, allowing for the right data to be brought to the right people.”

From left to right: Trudi Hable and Flavio Guimarães of Radix and Laxmi Akkaraji of Cognite. Photos courtesy of Cognite

Ali Mostafavi, founder of Resilitix.AI, joins the Houston Innovators Podcast to discuss how he pivoted to provide important data amid Hurricane Beryl. Photo via tamu.edu

Why this entrepreneur believes Houston should lead resilience technology alongside the energy transition

tune in

When it comes to developing resilience technology, Houston startup founder Ali Mostafavi knows he's in the right place.

Mostafavi, a civil and environmental engineering professor at Texas A&M University, co-founded Resilitix.AI two years ago, and with the help of his lab at A&M, has created a platform that brings publicly available data into AI algorithms to provide its partners near-real time information in storm settings.

"We are very excited that our company is Houston based," he says on the Houston Innovators Podcast. "We should not be just ground zero of disasters. We have to also be ground zero for solutions as well. I believe Houston should be the hub for resilience tech innovation as it is for energy transition.

"I think energy transition, climatetech, energy tech, and disaster tech go hand in hand," Mostafavi continues. "I feel that we are in the right place."

Earlier this month, Mostafavi got an unexpected chance to pilot his company's data-backed and artificial intelligence-powered platform — all while weathering one of Houston's most impactful storms.

As Hurricane Beryl came ashore with Houston on its path, Mostafavi says he had the opportunity to both test his technology and provide valuable information to his community during the storm.

"We were in the process of fine tuning some of our methods and algorithms behind our technology," Mostafavi says. "When disasters happen, you go to activation mode. We put our technology development and R&D efforts on hold and try to test our technology in an operational setting."

The platform provides its partners — right now, those include local and state organizations and emergency response teams — information on evacuation reports, street flooding, and even damage sustained based on satellite imagery. Mostafavi says that during Beryl, users were wondering how citizens were faring amid rising temperatures and power outages. The Resilitix team quickly pivoted to apply algorithms to hospital data to see which neighborhoods were experiencing high volumes of patients.

"We had the ability to innovate on the spot," Mostafavi says, adding that his own lack of power and internet was an additional challenge for the company. "When an event happens, we start receiving requests and questions. ... We had to be agile and adapt our methods to be responsive. Then at the same time, because we haven't tested it, we have to verify that we are confident (in the information we provide)."

On the episode, Mostafavi shares how Hurricane Harvey — which occurred shortly after Mostafavi moved to Houston — inspired the foundation of Resilitix, and he also explains how he plans to grow and scale the business.

———

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Local energy innovators recognized at annual Houston Innovation Awards

the big winners

This week, the Houston innovation ecosystem celebrated big wins from the year, and members of the energy transition community were recognized alongside other innovators.

The Houston Innovation Awards honored over 40 finalists across categories, naming the 12 winners and honoring the two Trailblazer Legacy Awards at the event. The event, hosted at TMC Helix Park on November 14 named and celebrated the winners, which included four energy transition innovators.

Here's what energy leaders secured wins during the evening.

Corrolytics is a technology startup founded to solve microbiologically influenced corrosion problems for industrial assets. Co-founder and CEO Anwar Sadek says he's collected over $1 million in dilutive and non-dilutive funding from grants and other opportunities thanks to help from mentors. The company won both the Minority-Founded Business category and the People's Choice: Startup of the Year category.

"As a founder, I am always eager to assist and support fellow entrepreneurs, especially those navigating the unique challenges that come with being a BIPOC founder," he says. "With the guidance of mentors, I learned to master the complexities of the application process for grants and other funding opportunities. In turn, I actively share my experiences with other founders, helping them navigate similar paths."

Founded by CEO Cindy Taff, SageGeosystems is an energy company focused on developing and deploying advanced geothermal technologies to provide reliable power and sustainable energy storage solutions regardless of geography. The company secured the win in the Energy Transition Business category, alongside finalists Amperon, ARIX Technologies, Elementium Materials, InnoVent Renewables, and Tierra Climate.

"Sage Geosystems sets itself apart from competitors with its Geopressured Geothermal Systems, which can be deployed almost anywhere, unlike traditional geothermal technologies that require specific geographic conditions," Taff says. "This flexibility enables Sage to provide a reliable and virtually limitless power supply, making it ideal for energy-intensive applications like data centers."

A finalist in both the Investor of the Year and Ecosystem Builder categories, Juliana Garaizar is the founding partner of Energy Tech Nexus, invests with groups — such as Portfolia, Houston Angel Network, Business Angel Minority Association, and more — locally and beyond.

"I'm a hands on investor," she says. "I offer mentorship and industry and other investor connections. I take advisory roles and board observer seats."

This year, the Houston innovation community suffered the loss of two business leaders who left a significant impact on the ecosystem. Both individuals' careers were recognized with Trailblazer Legacy Awards.

One of the recipients was Scott Gale, executive director of Halliburton Labs, who received the award posthumously. He died on September 24. The award was decided on by the 2024 judges and InnovationMap. Gale was honored alongside Paul Frison, founder of the Houston Technology Center.

“I am immensely proud to honor these two remarkable individuals with the Trailblazer Award this year. It is fitting, as they represent two generations of building Houston’s ecosystem," 2023 Trailblazer Award recipient Brad Burke, managing director of the Rice Alliance and the associate vice president for industry and new ventures within Rice University's Office of Innovation, tells InnovationMap.

"Paul Frison was a pioneering leader who helped establish the Houston Technology Center and fostered the city’s tech ecosystem during the initial technology boom around the year 2000. Scott Gale, through his work at Halliburton Labs over the past five years, has been instrumental in launching Houston’s energy transition ecosystem," he continues. "Both have played pivotal roles in championing technology innovators.”

In honor of his son, Andrew Gale accepted the award with his daughter-in-law, Nicole, during the event.

Pipeline robotics: How this Houston startup is revolutionizing corrosion monitoring

listen now

After working for years in the downstream energy industry where safety and efficiency were top priorities, Dianna Liu thought there was a way technology could make a huge difference.

Despite loving her company and her job, she took a leap of faith to start a robotics company to create technology to more safely and efficiently monitor corrosion in pipelines. ARIX Technologies has developed software and hardware solutions for its customers with pipelines in downstream and beyond.

"Overall, this industry is an industry that really harps on doing things safely, doing things well, and having all the data to make really informed decisions," Liu says on the Houston Innovators Podcast. "Because these are huge companies with huge problems, it takes a lot of time to set up the right systems, adopt new things, and make changes."

But it's an industry Liu knows well, so she founded ARIX in 2017 and created a team of engineers to create the first iteration of the ARIX robot, which was at first made of wood, she says. Now, years later, the much-evolved robot moves up and down the exterior of the pipe, using its technology to scan the interior to evaluate corrosion. The technology works with ARIX's software to provide key data analysis.

With customers across the country and the world, ARIX has a strong foothold in downstream, but has garnered interest from other verticals as well — even working with NASA at one point, Liu says.

"Staying in downstream would be nice and safe for us, but we've been very lucky and have had customers in midstream, upstream, and even outside oil and gas and chemicals," she says. "We've gotten inquiries ranging from cosmetics plants to water or wastewater — essentially anything that's round or a pipe that can corrode, we can help with."

Liu, who goes into detail on the show about how critical establishing a positive company culture has been for ARIX, shares a bit about what it's been like growing her company in Houston.

"Houston being the Energy Capital of the World opens a lot of doors to both customers, investors, and employees in a way that's unparalleled. It is a great place to build a company because of that — you have all this expertise in this city and the surrounding areas that's hard to find elsewhere," she says. "Being such a hub — not only for energy, but in terms transportation — means it's easy for us to get to our customers from around the world."

———

This article originally ran on InnovationMap.