Musk has said Tesla will hold a shareholder meeting in November. Photo via Getty Images

Tesla has scheduled an annual shareholder meeting for November, one day after it came under pressure from major shareholders to do so.

Billionaire Elon Musk's company said in a regulatory filing on Thursday that the meeting would be held Nov. 6, but that may prove troublesome because it comes nearly three months after it is required to do so under state law in Texas, where the company is incorporated.

The annual meeting, given Tesla's fortunes this year, has the potential to be a raucous event and it is unclear how investors will react to the delay, which is rare for any major U.S. corporation.

Tesla shares have plunged 27% this year, largely due to blowback over Musk's affiliation with President Donald Trump, as well as rising competition.

The announcement of the meeting comes a day after a group of more than 20 Tesla shareholders sent a letter to the company's board pressing for an annual meeting after receiving no word of one with the deadline just days away.

Many shareholders have been miffed by Musk's participation in the Trump administration this year, saying he needs to focus on his EV company which is facing extraordinary pressures.

“An annual meeting provides shareholders with the opportunity to hear directly from the board about these concerns, and to vote for or against directors, the board’s approach to executive compensation, and other matters of material importance,” the group said in the letter.

The group cited Texas law, which requires companies to schedule annual shareholders meetings within 13 months of the prior annual meeting.

Tesla’s last shareholders meeting was on June 13 of last year, where investors voted to restore Musk’s record $44.9 billion pay package that was thrown out by a Delaware judge earlier that year.

Also on Thursday, Musk that the Grok chatbot will be heading to Tesla vehicles.

“Grok is coming to Tesla vehicles very soon. Next week at the latest,” Musk said on social media platform X, in response to a post stating that Grok implementation on Teslas wasn't announced on a Grok livestream Wednesday.

Grok was developed by Musk’s artificial intelligence company xAI and pitched as an alternative to “woke AI” interactions from rival chatbots like Google’s Gemini, or OpenAI’s ChatGPT.

Shares of Tesla rose 3% at the opening bell after tumbling this week when the feud between Trump and Musk heated up again.

Weatherford International has partnered with Abu Dhabi-based AIQ to scale processes and boost efficiency with the use of AI. Photo via Getty Images

Weatherford partners with Abu Dhabi-based AI company to boost efficiency

eyes on ai

Houston-headquartered oilfield service company Weatherford International announced a strategic Memorandum of Understanding (MOU) with AIQ, an Abu Dhabi-based artificial intelligence company, to develop innovative solutions for the energy sector.

"We are excited to partner with AIQ to bring innovative, AI-driven solutions to the oil and gas industry,” Girish Saligram, president and CEO of Weatherford, said in a news release. “This strategic partnership allows us to deliver cutting-edge technologies that empower our customers to maximize their operational efficiency, enhance automation, and reduce costs. By combining our strengths, we are leading the way in helping operators modernize their workflows and achieve greater success in today's rapidly evolving energy landscape.”

The collaboration aims to use Weatherford's software and hardware solutions with AIQ's AI-driven systems. Weatherford and AIQ hope this union will significantly enhance operational efficiency across global oil and gas facilities, help operators to optimize their production workflows and reduce downtime.

The companies have developed the new Modern Edge Integration, which will combine AIQ's AI technology with Weatherford's Modern Edge program. It will enable operators to scale their work processes.

In addition, Weatherford's Universal Normalizer will work with AIQ's capabilities to combine operational and financial analysis. Customers will also now be able to procure software needs via a comprehensive industrial SaaS platform with the WFRD Software Launchpad, which can eliminate the issues associated with managing multiple systems and vendors, and provide a single point of access for all Weatherford and partner-built applications.

"This partnership marks another step in AIQ's mission to build partnerships that accelerate the deployment of impactful AI systems across the energy value chain,” Magzhan Kenesbai, Acting Managing Director of AIQ, said in a news release. “By integrating our advanced AI-driven tools with Weatherford's energy-specific technology, we are driving greater efficiencies to the industry through the development of scalable, automated applications. Together, we are set to empower operators to optimize their workflows, reduce downtime, and achieve unparalleled operational excellence.”

Time is of the essence in getting power plants online. Getty Images

Big Tech's soaring energy demands making coal-fired power plant sites attractive

Transforming Coal Power

Coal-fired power plants, long an increasingly money-losing proposition in the U.S., are becoming more valuable now that the suddenly strong demand for electricity to run Big Tech's cloud computing and artificial intelligence applications has set off a full-on sprint to find new energy sources.

President Donald Trump — who has pushed for U.S. “energy dominance” in the global market and suggested that coal can help meet surging power demand — is wielding his emergency authority to entice utilities to keep older coal-fired plants online and producing electricity.

While some utilities were already delaying the retirement of coal-fired plants, the scores of coal-fired plants that have been shut down the past couple years — or will be shut down in the next couple years — are the object of growing interest from tech companies, venture capitalists, states and others competing for electricity.

That’s because they have a very attractive quality: high-voltage lines connecting to the electricity grid that they aren’t using anymore and that a new power plant could use.

That ready-to-go connection could enable a new generation of power plants — gas, nuclear, wind, solar or even battery storage — to help meet the demand for new power sources more quickly.

For years, the bureaucratic nightmare around building new high-voltage power lines has ensnared efforts to get permits for such interconnections for new power plants, said John Jacobs, an energy policy analyst for the Washington, D.C.-based Bipartisan Policy Center.

“They are very interested in the potential here. Everyone sort of sees the writing on the wall for the need for transmission infrastructure, the need for clean firm power, the difficulty with siting projects and the value of reusing brownfield sites,” Jacobs said.

Rising power demand, dying coal plants

Coincidentally, the pace of retirements of the nation's aging coal-fired plants had been projected to accelerate at a time when electricity demand is rising for the first time in decades.

The Department of Energy, in a December report, said its strategy for meeting that demand includes re-using coal plants, which have been unable to compete with a flood of cheap natural gas while being burdened with tougher pollution regulations aimed at its comparatively heavy emissions of planet-warming greenhouse gases.

There are federal incentives, as well — such as tax credits and loan guarantees — that encourage the redevelopment of retired coal-fired plants into new energy sources.

Todd Snitchler, president and CEO of the Electric Power Supply Association, which represents independent power plant owners, said he expected Trump's executive orders will mean some coal-fired plants run longer than they would have — but that they are still destined for retirement.

Surging demand means power plants are needed, fast

Time is of the essence in getting power plants online.

Data center developers are reporting a yearlong wait in some areas to connect to the regional electricity grid. Rights-of-way approvals to build power lines can also be difficult to secure, given objections by neighbors who may not want to live near them.

Stephen DeFrank, chairman of the Pennsylvania Public Utility Commission, said he believes rising energy demand has made retiring coal-fired plants far more valuable.

That's especially true now that the operator of the congested mid-Atlantic power grid has re-configured its plans to favor sites like retired coal-fired plants as a shortcut to meet demand, DeFrank said.

“That’s going to make these properties more valuable because now, as long as I’m shovel ready, these power plants have that connection already established, I can go in and convert it to whatever," DeFrank said.

Gas, solar and more at coal power sites

In Pennsylvania, the vast majority of conversions is likely to be natural gas because Pennsylvania sits atop the prolific Marcellus Shale reservoir, DeFrank said.

In states across the South, utilities are replacing retiring or retired coal units with gas. That includes a plant owned by the Tennessee Valley Authority; a Duke Energy project in North Carolina; and a Georgia Power plant.

The high-voltage lines at retired coal plants on the Atlantic Coast in New Jersey and Massachusetts were used to connect offshore wind turbines to electricity grids.

In Alabama, the site of a coal-fired plant, Plant Gorgas, shuttered in 2019, will become home to Alabama Power’s first utility-scale battery energy storage plant.

Texas-based Vistra, meanwhile, is in the process of installing solar panels and energy storage plants at a fleet of retired and still-operating coal-fired plants it owns in Illinois, thanks in part to state subsidies approved there in 2021.

Nuclear might be coming

Nuclear is also getting a hard look.

In Arizona, lawmakers are advancing legislation to make it easier for three utilities there — Arizona Public Service, Salt River Project and Tucson Electric Power — to put advanced nuclear reactors on the sites of retiring coal-fired plants.

At the behest of Indiana's governor, Purdue University studied how the state could attract a new nuclear power industry. In its November report, it estimated that reusing a coal-fired plant site for a new nuclear power plant could reduce project costs by between 7% and 26%.

The Bipartisan Policy Center, in a 2023 study before electricity demand began spiking, estimated that nuclear plants could cut costs from 15% to 35% by building at a retiring coal plant site, compared to building at a new site.

Even building next to the coal plant could cut costs by 10% by utilizing transmission assets, roads and buildings while avoiding some permitting hurdles, the center said.

That interconnection was a major driver for Terrapower when it chose to start construction in Wyoming on a next-generation nuclear power plant next to PacifiCorp’s coal-fired Naughton Power Plant.

Jobs, towns left behind by coal

Kathryn Huff, a former U.S. assistant secretary for nuclear energy who is now an associate professor at the University of Illinois Urbana-Champaign, said the department analyzed how many sites might be suitable to advanced nuclear reactor plants.

A compelling factor is the workers from coal plants who can be trained for work at a nuclear plant, Huff said. Those include electricians, welders and steam turbine maintenance technicians.

In Homer City, the dread of losing its coal-fired plant — it shut down in 2023 after operating for 54 years — existed for years in the hills of western Pennsylvania’s coal country.

“It’s been a rough 20 years here for our area, maybe even longer than that, with the closing of the mines, and this was the final nail, with the closing of the power plant,” said Rob Nymick, Homer City's manager. “It was like, ‘Oh my god, what do we do?’”

That is changing.

The plant's owners in recent weeks demolished the smoke stacks and cooling towers at the Homer City Generating State and announced a $10 billion plan for a natural gas-powered data center campus.

It would be the nation’s third-largest power generator and that has sown some optimism locally.

“Maybe we will get some families moving in, it would help the school district with their enrollment, it would help us with our population,” Nymick said. “We’re a dying town and hopefully maybe we can get a restaurant or two to open up and start thriving again. We’re hoping.”

Houston-based Collide plans to use its seed funding to accelerate the development of its GenAI platform for the energy industry. Photo via Getty Images.

Houston energy-focused AI platform raises $5M in Mercury-led seed round

fresh funding

Houston-based Collide, a provider of generative artificial intelligence for the energy sector, has raised $5 million in seed funding led by Houston’s Mercury Fund.

Other investors in the seed round include Bryan Sheffield, founder of Austin-based Parsley Energy, which was acquired by Dallas-based Pioneer Natural Resources in 2021; Billy Quinn, founder and managing partner of Dallas-based private equity firm Pearl Energy Investments; and David Albin, co-founder and former managing partner of Dallas-based private equity firm NGP Capital Partners.

“(Collide) co-founders Collin McLelland and Chuck Yates bring a unique understanding of the oil and gas industry,” Blair Garrou, managing partner at Mercury, said in a news release. “Their backgrounds, combined with Collide’s proprietary knowledge base, create a significant and strategic moat for the platform.”

Collide, founded in 2022, says the funding will enable the company to accelerate the development of its GenAI platform. GenAI creates digital content such as images, videos, text, and music.

Originally launched by Houston media organization Digital Wildcatters as “a professional network and digital community for technical discussions and knowledge sharing,” the company says it will now shift its focus to rolling out its enterprise-level, AI-enabled solution.

Collide explains that its platform gathers and synthesizes data from trusted sources to deliver industry insights for oil and gas professionals. Unlike platforms such as OpenAI, Perplexity, and Microsoft Copilot, Collide’s platform “uniquely accesses a comprehensive, industry-specific knowledge base, including technical papers, internal processes, and a curated Q&A database tailored to energy professionals,” the company said.

Collide says its approximately 6,000 platform users span 122 countries.

Schneider Electric's new Energy Innovation Center can simulate various real-world scenarios in refineries, combined-cycle power plants, ethylene plants and other facilities. Getty Images

Global co. opens state-of-the-art energy innovation hub in Houston

flagship facility

French multinational company Schneider Electric has opened a new 10,500-square-foot, state-of-the-art Energy Innovation Center in Houston.

The new facility is located in Houston’s Energy Corridor and is designed to “foster increased collaboration and technological advancements across the entire value chain,” according to a news release from the company. The new Houston location joins Schneider's existing innovation hubs in Paris, Singapore and Bangalore.

The venue will serve as a training center for process control engineers, production superintendents, manufacturing managers, technical leads and plant operations personnel. It can simulate various real-world scenarios in refineries, combined-cycle power plants, ethylene plants, recovery boilers and chemical reactors.

It includes an interactive control room and artificial Intelligence applications that “highlight the future of industrial automation,” according to the release.

"Digitalization is significantly enhancing the global competitiveness of the U.S. through continuous innovation and increased investment into next-generation technology," Aamir Paul, Schneider Electric's President of North America Operations, said in the release.

Texas has over 4,100 Schneider Electric employees, the most among U.S. states, and has facilities in El Paso, the Dallas-Fort Worth metroplex and other areas.

"This flagship facility in the Energy Capital of the World underscores our commitment to driving the future of software-defined automation for our customers in Houston and beyond,” Paul added in the release. “With this announcement, we are excited to continue supporting the nation's ambitions around competitive, efficient and cost-effective manufacturing."

Schneider Electric says the new Houston facility is part of its expansion plans in the U.S. The company plans to invest over $700 million in its U.S. operations through 2027, which also includes an expansion at its El Paso campus.

The company also announced plans to invest in solar and battery storage systems developed, built, and operated by Houston-based ENGIE North America last year. Read more here.

Chevron, Engine No. 1 and GE Vernova will develop power plants that allow for the future integration of lower-carbon solutions to support AI-focused data centers. Photo via Getty Images

Chevron and partners to develop innovative power plants to support AI-focused data centers

power partners

Houston-based Chevron U.S.A. Inc., San Francisco investment firm Engine No. 1, and Boston electric service company GE Vernova have announced a partnership to create natural gas power plants in the United States. These plants support the increased demand for electricity at data centers, specifically those developing artificial intelligence solutions.

“The data centers needed to scale AI require massive amounts of 24/7 power. Meeting this demand is forecasted to require significant investment in power generation capacity, while managing carbon emissions and mitigating the risk of grid destabilization,” Chevron CEO Mike Wirth, shared in a LinkedIn post.

The companies say the plants, known as “power foundries,” are expected to deliver up to four gigawatts, equal to powering 3 million to 3.5 million U.S. homes, by the end of 2027, with possible project expansion. Their design will allow for the future integration of lower-carbon solutions, such as carbon capture and storage and renewable energy resources.

They are expected to leverage seven GE Vernova 7HA natural gas turbines, which will serve co-located data centers in the Southeast, Midwest and West. The exact locations have yet to be specified.

“Energy is the key to America’s AI dominance, “ Chris James, founder and chief investment officer of investment firm Engine No. 1, said in a news release. “By using abundant domestic natural gas to generate electricity directly connected to data centers, we can secure AI leadership, drive productivity gains across our economy and restore America’s standing as an industrial superpower. This partnership with Chevron and GE Vernova addresses the biggest energy challenge we face.”

According to the companies, the projects offer cost-effective and scalable solutions for growth in electrical demand while avoiding burdening the existing electrical grid. The companies plan to also use the foundries to sell surplus power to the U.S. power grid in the future.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

1PointFive secures new buyer for Texas CO2 removal project​

seeing green

Houston’s Occidental Petroleum Corp., or Oxy, and its subsidiary 1PointFive have secured another carbon removal credit deal for its $1.3 billion direct air capture (DAC) project, Stratos.

California-based Palo Alto Networks has agreed to purchase 10,000 tons of carbon dioxide removal (CDR) credits over five years from the project, according to a news release.

The company joins others like Microsoft, Amazon, AT&T, Airbus, the Houston Astros and the Houston Texans that have agreed to buy CDR credits from 1Point5.

"Collaborating with 1PointFive in this carbon removal credit agreement highlights our proactive approach toward exploring innovative solutions for a greener future,” BJ Jenkins, president of Palo Alto Networks, said in the release.

The Texas-based Stratos project is slated to come online this year near Odessa. It's being developed through a joint venture with investment manager BlackRock and is designed to capture up to 500,000 metric tons of CO2 per year. The U.S Environmental Protection Agency recently approved Class VI permits for the project.

DAC technology pulls CO2 from the air at any location, not just where carbon dioxide is emitted. Under the agreement with Palo Alto Networks and others, the carbon dioxide that underlies the credits will be stored in a below-the-surface saline aquifer and won’t be used to produce oil or gas.

“We look forward to collaborating with Palo Alto Networks and using Direct Air Capture to help advance their sustainability strategy,” Michael Avery, president and general manager of 1PointFive, said in the release. “This agreement continues to build momentum for high-integrity carbon removal while furthering DAC technology to support energy development in the United States.”

Houston researchers develop strong biomaterial that could replace plastic

plastic problem

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic.

The research was led by Muhammad Maksud Rahman, an assistant professor of mechanical and aerospace engineering at the University of Houston and an adjunct assistant professor of materials science and nanoengineering at Rice University. The team shared its findings in a study in the journal Nature Communications earlier this month. M.A.S.R. Saadi, a doctoral student in material science and nanoengineering at Rice, served as the first author.

The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties,” according to the researchers.

Biomaterials typically have weaker mechanical properties than their synthetic counterparts. However, the team was able to develop sheets of material with similar strengths to some metals and glasses. And still, the material was foldable and fully biodegradable.

To achieve this, the team developed a rotational bioreactor and utilized fluid motion to guide the bacteria fibers into a consistent alignment, rather than allowing them to align randomly, as they would in nature.

The process also allowed the team to easily integrate nanoscale additives—like graphene, carbon nanotubes and boron nitride—making the sheets stronger and improving the thermal properties.

“This dynamic biosynthesis approach enables the creation of stronger materials with greater functionality,” Saadi said in a release. “The method allows for the easy integration of various nanoscale additives directly into the bacterial cellulose, making it possible to customize material properties for specific applications.”

Ultimately, the scientists at UH and Rice hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth.

Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

“We envision these strong, multifunctional and eco-friendly bacterial cellulose sheets becoming ubiquitous, replacing plastics in various industries and helping mitigate environmental damage,” Rahman said the release.

America's only rare earth producer announces $500M agreement with Apple

Digging In

MP Materials, which runs the only American rare earths mine, announced a new $500 million agreement with tech giant Apple on Tuesday to produce more of the powerful magnets used in iPhones as well as other high-tech products like electric vehicles.

This news comes on the heels of last week’s announcement that the U.S. Defense Department agreed to invest $400 million in shares of the Las Vegas-based company. That will make the government the largest shareholder in MP Materials and help increase magnet production.

Despite their name, the 17 rare earth elements aren’t actually rare, but it’s hard to find them in a high enough concentration to make a mine worth the investment.

They are important ingredients in everything from smartphones and submarines to EVs and fighter jets, and it's those military applications that have made rare earths a key concern in ongoing U.S. trade talks. That's because China dominates the market and imposed new limits on exports after President Donald Trump announced his widespread tariffs. When shipments dried up, the two sides sat down in London.

The agreement with Apple will allow MP Materials to further expand its new factory in Texas to use recycled materials to produce the magnets that make iPhones vibrate. The company expects to start producing magnets for GM's electric vehicles later this year and this agreement will let it start producing magnets for Apple in 2027.

The Apple agreement represents a sliver of the company's pledge to invest $500 billion domestically during the Trump administration. And although the deal will provide a significant boost for MP Materials, the agreement with the Defense Department may be even more meaningful.

Neha Mukherjee, a rare earths analyst with Benchmark Mineral Intelligence, said in a research note that the Pentagon's 10-year promise to guarantee a minimum price for the key elements of neodymium and praseodymium will guarantee stable revenue for MP Minerals and protect it from potential price cuts by Chinese producers that are subsidized by their government.

“This is the kind of long-term commitment needed to reshape global rare earth supply chains," Mukherjee said.

Trump has made it a priority to try to reduce American reliance on China for rare earths. His administration is both helping MP Materials and trying to encourage the development of new mines that would take years to come to fruition. China has agreed to issue some permits for rare earth exports but not for military uses, and much uncertainty remains about their supply. The fear is that the trade war between the world’s two biggest economies could lead to a critical shortage of rare earth elements that could disrupt production of a variety of products. MP Materials can't satisfy all of the U.S. demand from its Mountain Pass mine in California’s Mojave Desert.

The deals by MP Materials come as Beijing and Washington have agreed to walk back on their non-tariff measures: China is to grant export permits for rare earth magnets to the U.S., and the U.S. is easing export controls on chip design software and jet engines. The truce is intended to ease tensions and prevent any catastrophic fall-off in bilateral relations, but is unlikely to address fundamental differences as both governments take steps to reduce dependency on each other.