The research outfit says North America leads global AI growth in oil and gas, with Houston playing a pivotal role. Image via Shutterstock

Houston rises as emerging hub for $6B global AI in oil and gas industry, per new report

by the numbers

Houston is emerging as a hub for the development of artificial intelligence in the oil and gas industry — a global market projected to be worth nearly $6 billion by 2028.

This fresh insight comes from a report recently published by ResearchAndMarkets.com. The research outfit says North America leads global AI growth in oil and gas, with Houston playing a pivotal role.

“With AI-driven innovation at its core, the oil and gas industry is set to undergo a profound transformation, impacting everything from reservoir optimization to asset management and energy consumption strategies — setting a new standard for the future of the sector,” says ResearchAndMarkets.com.

The research company predicts the value of the AI sector in oil and gas will rise from an estimated $3.2 billion in 2023 and $3.62 billion in 2024 to $5.8 billion by 2028. The report divides AI into three categories: software, hardware, and hybrids.

As cited in the report, trends that are sparking the explosion of AI in oil and gas include:

  • Stepped-up use of data
  • Higher demand for energy efficiency and sustainability
  • Automation of repetitive tasks
  • Optimization of exploration and drilling
  • Enhancement of safety

“The oil and gas industry’s ongoing digitization is a significant driver behind … AI in the oil and gas market. Rapid adoption of AI technology among oilfield operators and service providers serves as a catalyst, fostering market growth,” says ResearchAndMarkets.com.

The report mentions the Open AI Energy Initiative as one of the drivers of increased adoption of AI in oil and gas. Baker Hughes, C3 AI, Microsoft, and Shell introduced the initiative in February 2021. The initiative enables energy operators, service providers, and vendors to create sharable AI technology for the oil and gas industry.

Baker Hughes and C3 AI jointly market AI offerings for the oil and gas industry.

Aside from Baker Hughes, Microsoft, and Shell, other companies with a significant Houston presence that are cited in the AI report include:

  • Accenture
  • BP
  • Emerson Electric
  • Google
  • Halliburton
  • Honeywell
  • Saudi Aramco
  • Schlumberger
  • TechnipFMC
  • Weatherford International
  • Wood

Major AI-related trends that the report envisions in the oil and gas sector include the:

  • Digital twins for asset modeling
  • Autonomous robotics
  • Advanced analytics for reservoir management
  • Cognitive computing for decision-making
  • Remote monitoring and control systems

“The digitization trend within the oil and gas sector significantly propels the AI in oil and gas market,” says the report.

———

This article originally ran on InnovationMap.

The new course will provide participants with insights on how to use robotics to enhance efficiency in data collection, AI data analysis tools for industry, risk management with AI, and more. Photo courtesy of UH

Houston university launches latest micro-credential course focused on AI, robotics for the energy industry

coming soon

The University of Houston will launch its latest micro-credential course next month that focuses on how AI and robotics can be used in inspection processes for the energy industry.

Running from March 22 through April 22, the course is open to "engineers, technicians and industry professionals with advanced knowledge in the dynamic fields of robotics and AI," according to a statement from UH. It will combine weekly online lectures and in-person hands-on demonstrations and provide participants with insights on how to use robotics to enhance efficiency in data collection, AI data analysis tools for industry, risk management with AI, and more.

“By blending theoretical knowledge with practical applications and hands-on experience, the course aims to empower participants with the skills needed to evaluate and adopt these advanced technologies to address real-world challenges in asset management,” Vedhus Hoskere, assistant professor at the UH Cullen College of Engineering, said in a statement. “We hope that upskilling and knowledge gained from this course will help accelerate the adoption of AI and robotics and contribute to the advancement of safer and more resource-efficient energy infrastructure systems.”

Hoskere will teach the course module titled “Computer Vision and Deep Learning for Inspections.” He also recently received a $500,000 grant from the Texas Department of Transportation (TxDOT) to look at how to use drones, cameras, sensors and AI to support Texas' bridge maintenance programs.

Other leaders of the UH Energy course will include:

  • Kimberley Hayes, founder of Valkim Technologies: Lead speaker who will provide an overview and introduction of AI applications, standards and certification
  • Gangbing Song, Moores Professor of Mechanical Engineering at UH: Machine learning hands-on exercises
  • Pete Peterson, head of product management and marketing with XaaS Lab: Computer vision technology in the oil and gas industry
  • Matthew Alberts, head of project management with Future Technologies Venture Venture LLC: Use cases, workflow and optimizing inspections with AI and drones
  • Suchet Bargoti, chief technology officer at Abyss Solutions: AI and robots for integrity management.

Registration accepted up to the first day of the course and can be completed online.

IBM and Boxes recently partnered to integrate the IBM watsonx Assistant into Boxes devices, providing a way for consumer packaged brands to find out more than ever about what its customers like and want. Photo courtesy of Boxes

Houston startup taps new corporate partner for AI-backed sustainability consumer tech

out of the boxes

With the help of a new conversational artificial intelligence platform, a Houston startup is ready to let brands get up close and personal with consumers while minimizing waste.

IBM and Boxes recently partnered to integrate the IBM watsonx Assistant into Boxes devices, providing a way for consumer packaged brands to find out more than ever about what its customers like and want.

The Boxes device, about the size of a 40-inch television screen, dispenses products to consumers in a modern and sustainable spin on the old-fashioned large vending machine.

CEO Fernando Machin Gojdycz learned that business from his entrepreneur father, Carlos Daniel Machin, while growing up in Uruguay.

“That’s where my passion comes from — him,” Gojdycz says of his father. In 2016, Gojdycz founded Boxes in Uruguay with some engineer friends

Funded by a $2,000 grant from the University of Uruguay, the company's mission was “to democratize and economize affordable and sustainable shopping,” in part by eliminating wasteful single-use plastic packaging.

“I worked for one year from my bedroom,” he tells InnovationMap.

Fernando Machin Gojdycz founded Boxes in Uruguay before relocating the company to Greentown Houston. Photo courtesy of Boxes

The device, attached to a wall, offers free samples, or purchased products, in areas of high foot traffic, with a touch-screen interface. Powered by watsonx Assistant, the device asks survey questions of the customer, who can answer or not, on their mobile devices, via a QR code.

In return for completing a survey, customers can get a digital coupon, potentially generating future sales. The software and AI tech tracks sales and consumer preferences, giving valuable real-time market insight.

“This is very powerful,” he says.

Boxes partnered in Uruguay with major consumer brands like Kimberly-Clark, SC Johnson and Unilever, and during COVID, pivoted and offered PPE products. Then, with plans of an expansion into the United States, Boxes in 2021 landed its first U.S. backer, with $120,000 in funding from startup accelerator Techstars.

This led to a partnership with the Minnesota Twins, where Boxes devices at Target Field dispensed brand merchandise like keychains and bottles of field dirt.

Gojdycz says while a company in the Northeast is developing a product similar in size, Boxes is not “targeting traditional spaces.” Its software and integration with AI allows Boxes to seamlessly change the device screen and interface, remotely, as well.

Boxes aims to provide the devices in smaller spaces, like restrooms, where they have a device at the company's headquarters at climate tech incubator Greentown Labs. Boxes also recently added a device at Hewlett Packard Enterprise headquarters in Spring, as part of HPE’s diversity startup program.

Boxes hopes to launch another sustainable innovation later this year, in universities and supermarkets. The company is also developing a device that would offer refillable detergent and personal cleaning products like shampoo and conditioner with a reusable container.

Since plastic packaging accounts for 40 percent of retail price, consumers would pay far less, making a huge difference, particularly for lower-income families, he says.

“We are working to make things happen, because we have tried to pitch this idea,” he says.

Some supermarket retailers worry they may lose money or market share, and that shoppers may forget to bring the refill bottles with them to the store, for example.

“It’s about..the U.S. customer,” he says, “….but we think that sooner or later, it will come.”

Boxes has gotten funding from the accelerator startup branch of Houston-based software company Softeq, as well as Mission Driven Finance, Google for Startups Latino Founders Fund, and Right Side Capital, among others.

“Our primary challenges are scaling effectively with a small, yet compact team and maintaining control over our financial runway,” Gojdycz says.

The company has seven employees, including two on its management team.

Gojdycz says they are actively hiring, particularly in software and hardware engineering, but also in business development.

---

This article originally ran on InnovationMap.

The world can't keep on with what it's doing and expect to reach its goals when it comes to climate change. Radical innovations are needed at this point, writes Scott Nyquist. Photo via Getty Images

Only radical innovation can get the world to its climate goals, says this Houston expert

guest column

Almost 3 years ago, McKinsey published a report arguing that limiting global temperature rises to 1.5 degrees Celsius above pre-industrial levels was “technically achievable,” but that the “math is daunting.” Indeed, when the 1.5°C figure was agreed to at the 2015 Paris climate conference, the assumption was that emissions would peak before 2025, and then fall 43 percent by 2030.

Given that 2022 saw the highest emissions ever—36.8 gigatons—the math is now more daunting still: cuts would need to be greater, and faster, than envisioned in Paris. Perhaps that is why the Intergovernmental Panel on Climate Change (IPCC) noted March 20 (with “high confidence”) that it was “likely that warming will exceed 1.5°C during the 21st century.”

I agree with that gloomy assessment. Given the rate of progress so far, 1.5°C looks all but impossible. That puts me in the company of people like Bill Gates; the Economist; the Australian Academy of Science, and apparently many IPCC scientists. McKinsey has estimated that even if all countries deliver on their net zero commitments, temperatures will likely be 1.7°C higher in 2100.

In October, the UN Environment Program argued that there was “no credible pathway to 1.5°C in place” and called for “an urgent system-wide transformation” to change the trajectory. Among the changes it considers necessary: carbon taxes, land use reform, dietary changes in which individuals “consume food for environmental sustainability and carbon reduction,” investment of $4 trillion to $6 trillion a year; applying current technology to all new buildings; no new fossil fuel infrastructure. And so on.

Let’s assume that the UNEP is right. What are the chances of all this happening in the next few years? Or, indeed, any of it? President Obama’s former science adviser, Daniel Schrag, put it this way: “ Who believes that we can halve global emissions by 2030?... It’s so far from reality that it’s kind of absurd.”

Having a goal is useful, concentrating minds and organizing effort. And I think that has been the case with 1.5°C, or recent commitments to get to net zero. Targets create a sense of urgency that has led to real progress on decarbonization.

The 2020 McKinsey report set out how to get on the 1.5°C pathway, and was careful to note that this was not a description of probability or reality but “a picture of a world that could be.” Three years later, that “world that could be” looks even more remote.

Consider the United States, the world’s second-largest emitter. In 2021, 79 percent of primary energy demand (see chart) was met by fossil fuels, about the same as a decade before. Globally, the figures are similar, with renewables accounting for just 12.5 percent of consumption and low-emissions nuclear another 4 percent. Those numbers would have to basically reverse in the next decade or so to get on track. I don’t see how that can happen.

No alt text provided for this image

Credit: Energy Information Administration

But even if 1.5°C is improbable in the short term, that doesn’t mean that missing the target won’t have consequences. And it certainly doesn’t mean giving up on addressing climate change. And in fact, there are some positive trends. Many companies are developing comprehensive plans for achieving net-zero emissions and are making those plans part of their long-term strategy. Moreover, while global emissions grew 0.9 percent in 2022, that was much less than GDP growth (3.2 percent). It’s worth noting, too, that much of the increase came from switching from gas to coal in response to the Russian invasion of Ukraine; that is the kind of supply shock that can be reversed. The point is that growth and emissions no longer move in lockstep; rather the opposite. That is critical because poorer countries are never going to take serious climate action if they believe it threatens their future prosperity.

Another implication is that limiting emissions means addressing the use of fossil fuels. As noted, even with the substantial rise in the use of renewables, coal, gas, and oil are still the core of the global energy system. They cannot be wished away. Perhaps it is time to think differently—that is, making fossil fuels more emissions efficient, by using carbon capture or other technologies; cutting methane emissions; and electrifying oil and gas operations. This is not popular among many climate advocates, who would prefer to see fossil fuels “stay in the ground.” That just isn’t happening. The much likelier scenario is that they are gradually displaced. McKinsey projects peak oil demand later this decade, for example, and for gas, maybe sometime in the late 2030s. Even after the peak, though, oil and gas will still be important for decades.

Second, in the longer term, it may be possible to get back onto 1.5°C if, in addition to reducing emissions, we actually remove them from the atmosphere, in the form of “negative emissions,” such as direct air capture and bioenergy with carbon capture and storage in power and heavy industry. The IPCC itself assumed negative emissions would play a major role in reaching the 1.5°C target; in fact, because of cost and deployment problems, it’s been tiny.

Finally, as I have argued before, it’s hard to see how we limit warming even to 2°C without more nuclear power, which can provide low-emissions energy 24/7, and is the largest single source of such power right now.

None of these things is particularly popular; none get the publicity of things like a cool new electric truck or an offshore wind farm (of which two are operating now in the United States, generating enough power for about 20,000 homes; another 40 are in development). And we cannot assume fast development of offshore wind. NIMBY concerns have already derailed some high-profile projects, and are also emerging in regard to land-based wind farms.

Carbon capture, negative emissions, and nuclear will have to face NIMBY, too. But they all have the potential to move the needle on emissions. Think of the potential if fast-growing India and China, for example, were to develop an assembly line of small nuclear reactors. Of course, the economics have to make sense—something that is true for all climate-change technologies.

And as the UN points out, there needs to be progress on other issues, such as food, buildings, and finance. I don’t think we can assume that such progress will happen on a massive scale in the next few years; the actual record since Paris demonstrates the opposite. That is troubling: the IPCC notes that the risks of abrupt and damaging impacts, such as flooding and crop yields, rise “with every increment of global warming.” But it is the reality.

There is one way to get us to 1.5°C, although not in the Paris timeframe: a radical acceleration of innovation. The approaches being scaled now, such as wind, solar, and batteries, are the same ideas that were being discussed 30 years ago. We are benefiting from long-term, incremental improvements, not disruptive innovation. To move the ball down the field quickly, though, we need to complete a Hail Mary pass.

It’s a long shot. But we’re entering an era of accelerated innovation, driven by advanced computing, artificial intelligence, and machine learning that could narrow the odds. For example, could carbon nanotubes displace demand for high-emissions steel? Might it be possible to store carbon deep in the ocean? Could geo-engineering bend the curve?

I believe that, on the whole, the world is serious about climate change. I am certain that the energy transition is happening. But I don’t think we are anywhere near to being on track to hit the 1.5°C target. And I don’t see how doing more of the same will get us there.

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Annual offshore conference in Houston names honorees for leadership, sustainable efforts

otc 2024

The 2024 Offshore Technology Conference has revealed the three Distinguished Achievement Award recipients that will be recognized at the conference next month.

OTC, a conference that has served the offshore energy community for over 50 years, will bring 276,000 square feet of exhibit space to NRG Park and welcome over 31,000 attendees for more than 350 sessions. The awards reception will kick off the week on May 5.

One of the awards recipients named is Kerry J. Campbell, who will accept the OTC Distinguished Achievement Award for Individuals. Campbell was selected based on his "work in developing modern deepwater site characterization practice and for teaching and mentoring generations of site characterization professionals," reads the news release.

He's previously co-chaired sessions at OTC and served on a subcommittee for the organization, in addition to co-writing seventeen OTC papers. He retired from Fugro in 2020 after helping integrate 3D marine seismic data for engineering applications.

Petrobras will accept the OTC Distinguished Achievement Award for Companies, Organizations, and Institutions at the May banquet. The company was selected "for the deployment of a wide set of new technologies for the successful revitalization of the Marlim Field and the entire deepwater Campos Basin, unlocking new paths for mature deepwater asset redevelopment, with significant reduction in greenhouse gas emissions," per the release.

For about 50 years, the Campos Basin has been subjected to exploration and is known for various shallow water discoveries. In 1992, Petrobras was recognized for its deepwater development in Marlim, and over 30 years later, the company will be praised for its work redeveloping mature fields and the pioneering subsea, drilling, reservoir and decommissioning technologies.

The third and final award recipient is EnerGeo Alliance, which will receive the OTC Special Citation award for promoting efficiency and environmental sustainability within offshore seismic data collection.

"For more than 50 years, EnerGeo Alliance has been a stalwart in the quest for accessible, affordable energy around the globe, while also being a standard-bearer for safety and the environment," reads the release. "EneGeo Alliance has set the standard in the energy geoscience industry by establishing best practices and recommended guidance in key energy areas, including its Environmental Impact Assessment Handbook and Greenhouse Gas Emissions Guidance, for its members."

Rice physicist earns $15.5M grant from DOE for ground-breaking research

future of physics

A team of Rice University physicists has been awarded a prestigious grant from the Department of Energy's Office of Nuclear Physics for their work in high-energy nuclear physics and research into a new state of matter.

The five-year $15.5 million grant will go towards Rice physics and astronomy professor Wei Li's discoveries focused on the Compact Muon Solenoid (CMS), a large, general-purpose particle physics detector built on the Large Hadron Collider (LHC) at CERN, a European organization for nuclear research in France and Switzerland. The work is "poised to revolutionize our understanding of fundamental physics," according to a statement from Rice.

Li's team will work to develop an ultra-fast silicon timing detector, known as the endcap timing layer (ETL), that will provide upgrades to the CMS detector. The ETl is expected to have a time resolution of 30 picoseconds per particle, which will allow for more precise time-of-flight particle identification.

This will also help boost the performance of the High-Luminosity Large Hadron Collider (HL-LHC), which is scheduled to launch at CERN in 2029, allowing it to operate at about 10 times the luminosity than originally planned. The ETL also has applications for other colliders apart from the LHC, including the DOE’s electron-ion collider at the Brookhaven National Laboratory in Long Island, New York.

“The ETL will enable breakthrough science in the area of heavy ion collisions, allowing us to delve into the properties of a remarkable new state of matter called the quark-gluon plasma,” Li explained in a statement. “This, in turn, offers invaluable insights into the strong nuclear force that binds particles at the core of matter.”

The ETL is also expected to aid in other areas of physics, including the search for the Higgs particle and understanding the makeup of dark matter.

Li is joined on this work by co-principal investigator Frank Geurts and researchers Nicole Lewis and Mike Matveev from Rice. The team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas.

Last year, fellow Rice physicist Qimiao Si, a theoretical quantum physicist, earned the prestigious Vannevar Bush Faculty Fellowship grant. The five-year fellowship, with up to $3 million in funding, will go towards his work to establish an unconventional approach to create and control topological states of matter, which plays an important role in materials research and quantum computing.

Meanwhile, the DOE recently tapped three Houston universities to compete in its annual startup competition focused on "high-potential energy technologies,” including one team from Rice.

Tesla starts off 2024 with tumble in sales

in a decline

Tesla sales fell sharply last quarter as competition increased worldwide, electric vehicle sales growth slowed, and price cuts failed to lure more buyers.

The Texas company said Tuesday that it delivered 386,810 vehicles worldwide from January through March, almost 9% below the 423,000 it sold in the same quarter of last year. It was the first year-over-year quarterly sales decline in nearly four years.

Sales also fell short of even the most bearish Wall Street expectations. Auto industry analysts polled by FactSet were looking for 457,000 vehicle deliveries from Tesla Inc. That's a shortfall of more than 15%.

The company blamed the decline in part on phasing in an updated version of the Model 3 sedan at its Fremont, California, factory, plant shutdowns due to shipping diversions in the Red Sea, and an arson attack that knocked out power to its German factory.

But TD Cowen Analyst Jeffrey Osborne wrote in a note to investors that weaker March sales indicate that incentives, including discounts and a free trial of “Full Self Driving” software, “did not work as demand deteriorated.”

Despite the sales decline, Tesla was able to retake its global EV sales crown from China's BYD, which sold just over 300,000 electric vehicles during the quarter, Osborne wrote.

In its letter to investors in January, Tesla predicted “notably lower” sales growth this year. The letter said Tesla is between two big growth waves, one from global expansion of the Models 3 and Y, and a second coming from the Model 2, a new, smaller and less expensive vehicle with an unknown release date.

“This was an unmitigated disaster 1Q that is hard to explain away,” wrote Dan Ives, an analyst with Wedbush who has been very bullish on Tesla's stock. The drop in sales was far worse than expected, he wrote in a note to investors.

The quarter is a “seminal moment” in the Tesla growth story, Ives wrote, adding that CEO Elon Musk will have to turn the company around. “Otherwise, some darker days could clearly be ahead that could disrupt the long-term Tesla narrative.”

Ives maintained his Outperform rating on Tesla's shares and cut his one-year price target from $315 to $300. Ives estimated that China sales slid 3% to 4% during the period.

Shares of Tesla tumbled 4.9% to close Tuesday at $166.63, continuing an extended decline. Investors have shaved 33% off the value of the company so far this year, dumping shares after growing leery of the tremendous growth story that Tesla has been telling.

“Street criticism is warranted as growth has been sluggish and (profit) margins showing compression, with China a horror show and competition increasing from all angles,” Ives wrote.

Tesla dramatically lowered U.S. prices by up to $20,000 for some models last year. In March it temporarily knocked $1,000 off the Model Y, its top-selling vehicle. Those price cuts narrowed the company’s profit margins and spooked investors.

Analysts polled by FactSet expected the average selling price for Model Y to be $41,000 last quarter, $5,000 less than a year ago and $15,000 lower than the peak of $56,000 in June of 2022.

Tesla's sales numbers also pulled down shares of its U.S. EV competitors. Shares of Rivian fell 5.2%, while Lucid stock dropped 3.5% on Tuesday.

Deliveries of the Models 3 and Y, fell 10.3% year over year to 369,783. Sales of the company's other models, the aging X and S and the new Cybertruck, rose almost 60% to 17,027. Tesla produced 10.7% more vehicles than it sold during the first quarter.

Softer-than-expected first-quarter sales are reducing analyst expectations for Tesla's quarterly earnings ahead of their scheduled release on April 23.

Tesla’s sales come against the backdrop of a slowing market for electric vehicles in the U.S. EV sales grew 47% last year to a record 1.19 million as EV market share rose to 7.6%. But sales growth slowed toward the end of the year. In December, they rose 34%.

Updated EV sales numbers will come later Tuesday when most automakers report U.S. sales.

Other automakers also have had to cut electric vehicle production and reduce prices to move EVs off dealership lots. Ford, for instance, cut production of the F-150 Lightning electric pickup, and lopped up to $8,100 off the price of the Mustang Mach E electric SUV in order to sell 2023 models.