Tesla Talk

Tesla announces annual meeting under pressure from shareholders

Musk has said Tesla will hold a shareholder meeting in November. Photo via Getty Images

Tesla has scheduled an annual shareholder meeting for November, one day after it came under pressure from major shareholders to do so.

Billionaire Elon Musk's company said in a regulatory filing on Thursday that the meeting would be held Nov. 6, but that may prove troublesome because it comes nearly three months after it is required to do so under state law in Texas, where the company is incorporated.

The annual meeting, given Tesla's fortunes this year, has the potential to be a raucous event and it is unclear how investors will react to the delay, which is rare for any major U.S. corporation.

Tesla shares have plunged 27% this year, largely due to blowback over Musk's affiliation with President Donald Trump, as well as rising competition.

The announcement of the meeting comes a day after a group of more than 20 Tesla shareholders sent a letter to the company's board pressing for an annual meeting after receiving no word of one with the deadline just days away.

Many shareholders have been miffed by Musk's participation in the Trump administration this year, saying he needs to focus on his EV company which is facing extraordinary pressures.

“An annual meeting provides shareholders with the opportunity to hear directly from the board about these concerns, and to vote for or against directors, the board’s approach to executive compensation, and other matters of material importance,” the group said in the letter.

The group cited Texas law, which requires companies to schedule annual shareholders meetings within 13 months of the prior annual meeting.

Tesla’s last shareholders meeting was on June 13 of last year, where investors voted to restore Musk’s record $44.9 billion pay package that was thrown out by a Delaware judge earlier that year.

Also on Thursday, Musk that the Grok chatbot will be heading to Tesla vehicles.

“Grok is coming to Tesla vehicles very soon. Next week at the latest,” Musk said on social media platform X, in response to a post stating that Grok implementation on Teslas wasn't announced on a Grok livestream Wednesday.

Grok was developed by Musk’s artificial intelligence company xAI and pitched as an alternative to “woke AI” interactions from rival chatbots like Google’s Gemini, or OpenAI’s ChatGPT.

Shares of Tesla rose 3% at the opening bell after tumbling this week when the feud between Trump and Musk heated up again.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News