The Houston Auto Show and Houston Boat Show (Houston AutoBoative) run from Jan. 2–Feb. 2. Photo via Houston Auto Show/Facebook

The Houston Auto Show and Houston Boat Show (Houston AutoBoative) have returned to NRG Center this month, and for the first time, the popular events are part of the Automotive Experience Alliance (AEA).

Launched in October, the AEA is a coalition of about 30 auto shows that aim to drive innovation and standardization throughout the auto show industry, according to a news release.

“Formed out of a year-long strategic planning project, the Automotive Experience Alliance unites industry leaders committed to pushing the boundaries of automotive innovation while driving interest in and education of the latest vehicles and technology via an exciting and interactive event designed for the consumer,” AEA Chairman Kevin Mazzucola said in a release. “The AEA will initially focus on defining a set of standards that all associated members will adopt, including transparency with third-party audited attendance numbers and expanded demographic and purchase intent data.”

Clean energy coalition Evolve Houston is sponsoring the Houston Auto Show and providing attendees with the opportunity to test drive the latest electric vehicle offerings during its outdoor ride and drive.

Additionally, the show promises sports cars, trucks, and boats, and it includes attractions like sightings of three space rovers from NASA.

From the auto industry, vehicles from Nissan, Rolls Royce, Subaru, Toyota, Bentley, BMW, Bugatti, Buick, Cadillac, Chevrolet, Dodge, Ford, GMC, Honda, Hyundai, Ineos, Infiniti, Jeep, Kia, Lexus, Lincoln, Lotus, Mazda, and Volkswagen are on display.

While forming the AEA, 10 U.S. auto shows conducted the Auto Show Insights Initiative to gain feedback from 14,908 auto show attendees about the events to help strengthen shows for members in the coalition and streamline processes for the industry.

Other AEA members include the Austin Auto Show, North Texas Auto Expo and the San Antonio Auto Show, as well as others around the country.

“We’re thrilled to join the Automotive Experience Alliance and contribute to a more innovative future for automotive shows nationwide,” Wyatt Wainwright, President of the Houston Auto Show and AEA Vice President, said in a news release. “Leading as an example, we’ve created the AutoBoative Show, a first-of-its-kind event designed to bring like minded individuals together, broadening our reach to include both auto and boating enthusiasts. The past three years of this collaboration showcases our commitment to evolving with consumer interests and providing a unique, immersive experience that resonates with a wider audience.”

Evolve Houston, which was launched as part of Houston’s Climate Action Plan and is one of the organizations leading the way in the EV space. The nonprofit set out to have 30 percent of the vehicles in Houston be electric by 2030 while improving regional air quality and reducing greenhouse gas emissions in the Greater Houston area.

Houston AutoBoative runs from Jan. 2–Feb 2. Find more tickets and more information here.

The future of transportation fuels will be shaped by a mix of innovation, government policies, and what consumers want. Photo by Engin Akyurt/Pexels

Houston energy leader on why the future of fuels is more than electric vehicles

guest column

Gasoline, diesel, bunker fuel, and jet fuel. Four liquid hydrocarbons that have been powering transportation for the last 100-plus years.

Gas stations, truck stops, ports, and airport fuel terminals have been built up over the last century to make transportation easy and reliable.

These conventional fuels release Greenhouse Gases (GHG) when they are used, and governments all over the world are working on plans to shift towards cleaner fuels in an effort to lower emissions and minimize the effects of climate change.

For passenger cars, it’s clear that electricity will be the cleaner fuel type, with most countries adopting electric vehicles (EVs), and in some cases, providing their citizens with incentives to make the switch.

While many articles have been written about EVs and the benefits that come along with them, they fail to look at the transportation system as a whole.

Trucks, cargo ships, and airplanes are modes of transportation that are used every day, but they don’t often get the spotlight like EVs do.

For governments to be effective in curbing transportation-related greenhouse emissions, they must consider all forms of transportation and cleaner fuel options for them as well.

43 percent of GHG emissions comes from these modes of transportation. Therefore, using electricity to reduce GHG emissions in light duty vehicles only accounts for part of the total transportation emissions equation.

The path to cleaner fuels for these transportation modes has its challenges.

According to Ed Emmett, Fellow in Energy and Transportation Policy at the Baker Institute Center for Energy Studies (CES);

  • "Airplanes cannot be realistically powered by electricity, at least not currently, and handle the same requisite freight and passenger loads"
  • "The long-haul trucking industry [...] pushed back against electrification as being impractical due to the size and weight of batteries, their limited range, and the cost of adoption"
  • "Shipowners have expressed reluctance to scrap existing bunker fueled ships for newer, more expensive ships, especially when other fueling options, e.g. biofuels and hydrocarbon derivatives-for fleets can be made available"

Finding low-cost, reliable, and environmentally sound fuels for the various segments of transportation is complex. As Emmett suggests in his latest article;

"Hovering over the transition to other fuels for almost every transportation mode is the question of dependability of supply. For the trucking industry, the truck stop industry must be able to adapt to new fuel requirements. For ocean shipping, ports must be able to meet the fuel needs of new ships. Airlines, air cargo carriers and airports need to be on the same page when it comes to aviation fuels. In other words, the adoption equation in transitions in transportation is not only a function of the availability and cost of the new technology but also a function of the cost of the full supply chain needed to support fuel production and delivery to the point of use. Going forward, the transportation industry is facing a dilemma: How are environmental concerns addressed while simultaneously maintaining operational efficiency and avoiding unnecessary upward cost shifts for moving goods and people? In answering that question, for the first time in history, modes of transportation may end up going in multiple different directions when it comes to the fuels each mode ultimately chooses."

This is why many forecasts predict that hydrocarbon demand will continue through 2050, despite ambitious aspirations of achieving net zero emissions by that year. The McKinsey "slow evolution" scenario has global liquid hydrocarbon demand in 2050 at 92mmb/d versus 103 mmb/d in 2023. With their "continued momentum" scenario, oil demand is 75 mmb/d. Proportionally, global oil demand related to GHG emissions from transportation would decline 11-27 percent. The global uptake of EVs is the primary driver of uncertainty around future oil demand. In all the McKinsey scenarios, the share of EVs in passenger cars sales is expected to be above 90 percent by 2050.

The Good News

Despite the relatively slow progress expected for reducing GHG emissions in the global transportation sector, there are solutions emerging that lower the carbon footprint tied to traditional petroleum-based fuels. Emmett highlights some of the methods under study, noting that "sustainable biofuels sourced from cooking oils, animal fats, and agriculture products, as well as hydrogen, methanol, ammonia, and various e-fuels are among the options being tested. Some ocean carriers are already ordering ships powered by liquified natural gas, bio-e-methanol, bio/e-methane, ammonia, and hydrogen. Airlines are already using sustainable aviation fuel as a supplement to basic aviation fuel. Railroads are testing hydrogen locomotives. The trucking industry is decarbonizing local delivery by using vehicles powered by electricity, compressed natural gas, and sustainable diesel. Long-haul trucking companies are considering sustainable diesel as a drop-in fuel for existing equipment, and fuel suppliers are researching new engines fueled by hydrogen and other alternative fuels."

Most of these options will require a combination of increased government incentives, along with advancements in technology and cost reductions.

McKinsey's "sustainable transformation" scenario, which considers potential shifts in government regulations as well as advancements in technology and cost, suggests there is moderate growth in alternative fuels alongside growth in EVs. Mckinsey projects;

  • EV demand could grow to over 90 percent of total passenger car sales by 2050
  • EVs to make up around 80 percent of commercial truck sales by 2050
  • In aviation, low carbon fuels such as biofuels, synfuels, hydrogen and electricity are projected to grow to 49 percent by 2050.

According to McKinsey, the combination of these alternatives along with demand changes in power and chemicals could reduce global oil demand to 60 mmb/d in 2050. The shift to cleaner fuels, for modes of transportation other than EVs, is underway but the progress and adoption will take decades to achieve according to McKinsey’s forecasts.

Looking more closely at EVs, the story may not be as dire globally as it seems to be in the West. While the U.S. appears to be losing momentum on electric vehicle adoption, China is roaring ahead. New electric car registrations in China reached 8.1 million in 2023, increasing by 35 percent relative to 2022. McKinsey’s forecasts have underestimated global EV sales in the past, with China surpassing their estimates, while the U.S. lags behind. It’s clear that China is the winner in EV adoption; could they also lead the way to adopt cleaner fuels for other modes of transport? That is something governments and the transportation industry will be watching in the years ahead.

Conclusion

While we are not on a trajectory to meet the aspirations to reduce global GHG emissions in the transportation sector, there are emerging solutions that could be adopted should governments around the world decide to put in place the incentives to get there. Moving forward, the future of transportation fuels will be shaped by a mix of innovation, government policies, and what consumers want. The focus will be on ensuring that the transportation sector remains reliable, secure, and economically robust, while also reducing GHG emissions. But, decarbonizing the transportation sector is much more than just EV's – it's a broader effort that will require continued global progress in each of the multiple transportation segments.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on October 9, 2024.

While our grid may be showing its age, this is the perfect time to shift from reacting to problems to getting ahead of them.

Reshaping the Texas grid: The impact of EVs, AI, renewables, and extreme weather

guest column

Did you catch those images of idle generators that CenterPoint had on standby during Hurricane Beryl? With over 2 million people in the Houston area left in the dark, many were wondering, "if the generators are ready, why didn’t they get used?" It seems like power outages are becoming just as common as the severe storms themselves.

But as Ken Medlock, Senior Director of the Baker Institute Center for Energy Studies (CES) explains, it's not a simple fix. The outages during Hurricane Beryl were different from what we saw during Winter Storm Uri. This time, with so many poles and wires down, those generators couldn’t be put to use. It’s a reminder that each storm brings its own set of challenges, and there’s no one-size-fits-all solution when it comes to keeping the lights on. While extreme weather is one of the leading threats to our electric grid, it's certainly not the only one adding strain on our power infrastructure.

The rapid rise of artificial intelligence (AI) and electric vehicles (EVs) is transforming the way we live, work, and move. Beneath the surface of these technological marvels lies a challenge that could define the future of our energy infrastructure: they all depend on our electrical grid. As AI-powered data centers and a growing fleet of EVs demand more power than ever before, our grid—already under pressure from extreme weather events and an increasing reliance on renewable energy—faces a critical test. The question goes beyond whether our grid can keep up, but rather focuses on how we can ensure it evolves to support the innovations of tomorrow without compromising reliability today. The intersection of these emerging technologies with our aging energy infrastructure poses a dilemma that policymakers, industry leaders, and consumers must address.

Julie Cohn, Nonresident Fellow at the Center for Energy Studies at the Baker Institute for Public Policy, presents several key findings and recommendations to address concerns about the reliability of the Texas energy grid in her Energy Insight. She suggests there’s at least six developments unfolding that will affect the reliability of the Texas Interconnected System, operated by the Electric Reliability Council of Texas (ERCOT) and the regional distribution networks operated by regulated utilities.

Let’s dig deeper into some of these issues:

AI

AI requires substantial computational power, particularly in data centers that house servers processing vast amounts of data. These data centers consume large amounts of electricity, putting additional strain on the grid.

According to McKinsey & Company, a single hyperscale data center can consume as much electricity as 80,000 homes combined. In 2022, data centers consumed about 200 terawatt-hours (TWh), close to 4 percent, of the total electricity used in the United States and approximately 460 TWh globally. That’s nearly the consumption of the entire State of Texas, which consumed approximately 475.4 TWh of electricity in the same year. However, this percentage is expected to increase significantly as demand for data processing and storage continues to grow. In 2026, data centers are expected to account for 6 percent, almost 260 TWh, of total electricity demand in the U.S.

EVs

According to the Texas Department of Motor Vehicles, approximately 170,000 EVs have been registered across the state of Texas as of 2023, with Texas receiving $408 million in funding to expand its EV charging network. As Cohn suggests, a central question remains: Where will these emerging economic drivers for Texas, such as EVs and AI, obtain their electric power?

EVs draw power from the grid every time they’re plugged in to charge. This may come as a shock to some, but “the thing that’s recharging EV batteries in ERCOT right now, is natural gas,” says Medlock. And as McKinsey & Company explains, the impact of switching to EVs on reducing greenhouse gas (GHG) emissions will largely depend on how much GHG is produced by the electricity used to charge them. This adds a layer of complexity as regulators look to decarbonize the power sector.

Depending on the charger, a single EV fast charger can pull anywhere from 50 kW to 350 kW of electricity per hour. Now, factor in the constant energy drain from data centers, our growing population using power for homes and businesses, and then account for the sudden impact of severe environmental events—which have increased in frequency and intensity—and it’s clear: Houston… we have a problem.

The Weather Wildcard

Texas is gearing up for its 2025 legislative session on January 14. The state's electricity grid once again stands at the forefront of political discussions. The question is not just whether our power will stay on during the next winter storm or scorching summer heatwave, but whether our approach to grid management is sustainable in the face of mounting challenges. The events of recent years, from Winter Storm Uri to unprecedented heatwaves, have exposed significant vulnerabilities in the Texas electricity grid, and while legislative measures have been taken, they have been largely patchwork solutions.

Winter Storm Uri in 2021 was a wake-up call, but it wasn’t the first or last extreme weather event to test the Texas grid. With deep freezes, scorching summers, and unpredictable storms becoming the norm rather than the exception, it is clear that the grid’s current state is not capable of withstanding these extremes. The measures passed in 2021 and 2023 were steps in the right direction, but they were reactive, not proactive. They focused on strengthening the grid against cold weather, yet extreme heat, a more consistent challenge in Texas, remains a less-addressed threat. The upcoming legislative session must prioritize comprehensive climate resilience strategies that go beyond cold weather prep.

“The planners for the Texas grid have important questions to address regarding anticipated weather extremes: Will there be enough energy? Will power be available when and where it is needed? Is the state prepared for extreme weather events? Are regional distribution utilities prepared for extreme weather events? Texas is not alone in facing these challenges as other states have likewise experienced extremely hot and dry summers, wildfires, polar vortexes, and other weather conditions that have tested their regional power systems,” writes Cohn.

Renewable Energy and Transmission

Texas leads the nation in wind and solar capacity (Map: Energy, Environment, and Policy in the US), however the complexity lies in getting that energy from where it’s produced to where it’s needed. Transmission lines are feeling the pressure, and the grid is struggling to keep pace with the rapid expansion of renewables. In 2005, the Competitive Renewable Energy Zones (CREZ) initiative showed that state intervention could significantly accelerate grid expansion. With renewables continuing to grow, the big question now is whether the state will step up again, or risk allowing progress to stall due to the inadequacy of the infrastructure in place. The legislature has a choice to make: take the lead in this energy transition or face the consequences of not keeping up with the pace of change.

Conclusion

The electrical grid continues to face serious challenges, especially as demand is expected to rise. There is hope, however, as regulators are fully aware of the strain. While our grid may be showing its age, this is the perfect time to shift from reacting to problems to getting ahead of them.

As Cohn puts it, “In the end, successful resolution of the various issues will carry significant benefits for existing Texas industrial, commercial, and residential consumers and have implications for the longer-term economic attractiveness of Texas. Suffice it to say, eyes will be, and should be, on the Texas legislature in the coming session.”

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on September 11, 2024.

Zeta Energy's batteries are targeted to power Stellantis electric vehicles by 2030. Image via Zeta Energy

Houston company to develop game-changing lithium-sulfur EV batteries for automaker

team work

Houston-based Zeta Energy Corp. has teamed up with an automaker to develop new battery technology.

Zeta Energy and Stellantis N.V. announced a joint development deal to advance battery cell technology for electric vehicle applications that will develop lithium-sulfur EV batteries with gravimetric energy density that can achieve a volumetric energy density comparable to today’s lithium-ion technology. The batteries are targeted to power Stellantis electric vehicles by 2030.

“The combination of Zeta Energy’s lithium-sulfur battery technology with Stellantis’ unrivaled expertise in innovation, global manufacturing and distribution can dramatically improve the performance and cost profile of electric vehicles while increasing the supply chain resiliency for batteries and EVs,” Tom Pilette, CEO of Zeta Energy, says in a news release.

The batteries will be produced using waste materials and methane that boasts lower CO2 emissions than any existing battery technology. Zeta Energy battery technology is intended to be manufacturable within existing gigafactory technology and would leverage an entire domestic supply chain in Europe or North America.

The technology can lead to a significantly lighter battery pack with the same usable energy as contemporary lithium-ion batteries. The companies believe this will enable greater range, improved handling and enhanced performance. The technology has the potential to improve fast-charging speed by up to 50 percent, which can make EV ownership easier.

Lithium-sulfur batteries are expected to cost less than half the price per kilowatt of current lithium-ion batteries according to a news release. Zeta has more than 60 patents on its proprietary lithium-sulfur anode and cathode technologies.

Lighter and more compact EV batteries have become an important design goal for vehicle designers and manufacturers. This objective is similar to what General Motors is doing with prismatic cell technology with LG Energy Solution.

“Our collaboration with Zeta Energy is another step in helping advance our electrification strategy as we work to deliver clean, safe and affordable vehicles,” Ned Curic, Stellantis chief engineering and technology officer, says in the release. “Groundbreaking battery technologies like lithium-sulfur can support Stellantis’ commitment to carbon neutrality by 2038 while ensuring our customers enjoy optimal range, performance and affordability.”

Last year, Zeta Energy announced that it was selected to receive $4 million in federal funding for the development of efficient electric vehicle batteries from the U.S. Department of Energy's ARPA-E Electric Vehicles for American Low-Carbon Living, or EVs4ALL, program.

LG Chem’s Tennessee cathode plant, which began construction in December 2023, is designed for an annual production capacity of 60,000 tons and provides strategic geographic access for customer deliveries and raw material imports. Rendering via ExxonMobil

ExxonMobil names new partner to bolster US lithium supply chain with offtake agreement

ev supplies en route

Spring-headquartered ExxonMobil Corp. has announced a new MOU for an offtake agreement for up to 100,000 metric tons of lithium carbonate.

The agreement is with LG Chem, which is building its cathode plant in Tennessee and expects it to be the largest of its kind in the country. The project broke ground a year ago and expects an annual production capacity of 60,000 tons. The lithium will be supplied by ExxonMobil.

“America needs secure domestic supply of critical minerals like lithium,” Dan Ammann, president of ExxonMobil Low Carbon Solutions, says in a news release. “ExxonMobil is proud to lead the way in establishing domestic lithium production, creating jobs, driving economic growth, and enhancing energy security here in the United States.”

The industry currently has a lithium supply shortage due to the material's use in electric vehicle batteries and the fact that most of production happens overseas.

“Building a lithium supply chain with ExxonMobil, one of the world’s largest energy companies, holds great significance,” Shin Hak-cheol, CEO of LG Chem, adds. “We will continue to strengthen LG Chem’s competitiveness in the global supply chain for critical minerals.”

Per the release, the final investment decision is still pending.

Earlier this year, Exxon entered into another energy transition partnership, teaming up with Japan’s Mitsubishi to potentially produce low-carbon ammonia and nearly carbon-free hydrogen at ExxonMobil’s facility in Baytown.

Last month, the company announced it had signed the biggest offshore carbon dioxide storage lease in the U.S. ExxonMobil says the more than 271,000-acre site, being leased from the Texas General Land Office, complements the onshore CO2 storage portfolio that it’s assembling.

Reliant and GM Energy will be offering free nighttime charging for Chevrolet electric vehicle drivers that enroll in the new Reliant FreeCharge Nights. Photo via reliant.com

Reliant, GM Energy team up on free renewable energy EV charging

plugging in

Reliant Energy and GM Energy are advancing a new renewable energy electricity plan that will “accelerate the clean energy journey for the two companies and their customers,” according to a news release.

Houston-based Reliant and GM Energy will be offering free nighttime charging for Chevrolet electric vehicle drivers that enroll in the new Reliant FreeCharge Nights.

The Reliant FreeCharge Nights plan will be available to existing and new Reliant electricity customers, and provides a monthly bill credit that offsets the energy charges incurred from charging the qualifying EV between 11 pm and 6 am. Customers must first designate one EV to receive the charging credit in their GM Energy Smart Charging Portal before signing up for the plan.

“As we continue to shape the future of EV charging and energy management for our customers, our work alongside Reliant in Texas is a sign of our commitment to working with industry leaders to facilitate more solutions that make EV adoption an easy decision,” Aseem Kapur, chief revenue officer, GM Energy, says in a news release. “The Reliant Free Charge Nights plan is a great example of how an automaker and an energy company can work together to build the ecosystem to support the all-electric future.”

Over 150 Chevrolet dealerships can now offer the plan to EV drivers upon vehicle purchase across Texas. The plan will be powered by 100 percent renewable energy through the purchase of renewable energy certificates (RECs) equal to the customer’s electricity usage.

“We’re excited to help Chevrolet EV drivers offset the cost of charging their vehicle all while having access to a renewable electricity plan,” Rasesh Patel, president, NRG Consumer, said in a news release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Geothermal exec on Houston expansion, commercialization and more

Q&A

Challenges in the energy transition often center around two questions: Where will organizations find the resources? And how will projects be financed?

XGS Energy's next-gen closed-loop geothermal well architecture addresses both issues head-on. The California-based company saw massive growth in the Houston market last year and recently completed a 100-meter field demonstration in central Texas, marking a major milestone for its technology's commercialization and potential for scale.

In an interview with EnergyCapital, Axel-Pierre Bois, XGS's Chief Technology Officer, shares what drew him to the geothermal space, why XGS is expanding in Houston and what the company's plans are for the year ahead.

How does XGS Energy's technology address the biggest challenges in geothermal energy?

XGS Energy is developing a geothermal system that decouples geothermal energy from its traditional dependence on water and geology to deliver affordable, clean energy anywhere there is hot rock.

Historically, geothermal resources have been hard to locate, as conventional systems require the overlap of hot rock, porous and permeable geology, and abundant water to produce energy, limiting their potential to a few select hot spots worldwide. Instead of relying on an underground fracture network that drives the geology and water requirements, the base component of XGS’s system is a single well, in which fluid is pumped to a hot rock resource and then returned to the surface through a tube-in-shell design, creating a sealed, closed loop. This allows XGS to produce geothermal energy anywhere where there is hot rock, unlocking terawatt-scale potential in the U.S. alone.

Geothermal systems have also struggled to secure project financing, as many systems have historically faced high levels of unplanned cost risk due to factors including water loss and production uncertainty. XGS’s sealed, closed-loop system ensures that it can provide reliable, predictable electricity throughout its lifespan. XGS also boosts the cost-competitiveness of its system through our major innovation, a proprietary thermally conductive materials system that is installed downhole around each well, increasing the heat transferred to the closed-loop system by 30-50%.

What has drawn you to a career in the geothermal energy space?

I have been in the subsurface industry for over 30 years, developing technical solutions for companies in the fields of geosciences, underground storage, upstream oil and gas, and geothermal heat harvesting to help improve their overall economic, ethical and environmental footprints. In 2009, I founded Curistec, a technology company providing research, engineering and technical services for geomechanics, wellbore integrity, well abandonment, cement design and cement and rock testing. A few years back, Curistec assisted with the Iceland Deep Drilling Project, helping to develop cement formulations for superhot geothermal well applications to enable drilling in high-temperature environments. As I looked toward the future, it became clear that next-generation geothermal technologies would transform the geothermal energy industry and open new markets worldwide. Curistec had been working closely with the XGS Energy team as technology partners for several years, so joining the team directly to help shape the technology development was an exciting opportunity to help develop and deploy a new system to unlock the full terawatt-scale potential of geothermal energy.

Tell us about the 100-meter field demonstration in central Texas completed in 2024 — what all did you and your team learn from the test?

Our 100-meter field demonstration in central Texas marked a significant step in our progress toward deploying geothermal energy in a commercial setting. With this field operation, we successfully demonstrated our ability to mix, pump and place our thermally conductive materials system at a commercial scale, using off-shelf tools and technologies. This was a significant milestone, taking us from theoretical models and laboratory tests to field-scale operations, proving that our novel geothermal system is operationally viable in real-world well conditions.

The completion of the Texas field demonstration advanced XGS into the new wave of geothermal innovators that are putting real steel in the ground. In 2024, we kicked off construction at our commercial-scale demonstration in California and are excited to share updates in the year ahead.

Last year, XGS Energy leased over 10,000 square feet of office space in Memorial City. How has Houston's business community and opportunities benefitted the company?

Houston, the epicenter of the oil and gas industry, has become a hub of energy innovation, offering attractive incentives for growing companies like XGS. The region’s workforce, which is home to some of the best subsurface engineers and operational talent in the energy sector, was a key factor for XGS when we were planning our operational roadmap. This expertise, paired with proximity to our partners in the field services industries, like cementing and drilling, is both apracticaland tactical advantage for XGS.

We’ve built a strong technical and operational team here at XGS, with experience from the oil and gas industry, utilities and power project developers. XGS is planning for continued growth in the Houston area, leveraging the region’s leading engineering and operational workforce and its intensifying interest in supporting the energy transition.

What are XGS Energy's goals for 2025?

In 2024, the XGS Energy team made significant progress toward our goal of providing clean, round-the-clock energy with our solid-state geothermal system. In 2025, XGS Energy will be focused on deploying its geothermal system at a commercial scale, starting with the completion of our full-scale prototype in California. XGS will also continue accelerating our commercial traction, expanding our already robust and highly differentiated geothermal resource evaluation toolkit, advancing our global project pipeline, and growing our team to strengthen our operational capability and capacity.

Environmentalists say Trump's energy order would subvert Endangered Species Act

In The News

Environmental groups concerned about loss of protections for vanishing animals see one of President Donald Trump’s early executive orders as a method of subverting the Endangered Species Act in the name of fossil fuel extraction and corporate interests.

Trump declared an energy emergency via executive order earlier this week amid a promise to “drill, baby, drill.” One section of the order states that the long-standing Endangered Species Act can’t be allowed to serve as an obstacle to energy development.

That language is a pathway to rolling back protections for everything from tiny birds like the golden-cheeked warbler to enormous marine mammals like the North Atlantic right whale, conservation groups said Wednesday. Some vowed to fight the order in court.

The Endangered Species Act has been a hurdle for the development of fossil fuels in the U.S. for decades, and weakening the act would accelerate the decline and potential extinction of numerous endangered species, including whales and sea turtles, said Gib Brogan, a campaign director with conservation group Oceana.

“This executive order, in a lot of ways, is a gift to the oil and gas industry and is being sold as a way to respond to the emergency declaration by President Trump,” Brogan said. “There is no emergency. The species continue to suffer. And this executive order will only accelerate the decline of endangered species in the United States.”

The Endangered Species Act has existed for more than 50 years and is widely credited by scientists and environmentalists with helping save iconic American species such as the bald eagle from extinction. A key section of the act directs federal agencies to work to conserve endangered and threatened species and use their authorities to protect them.

Trump's order declaring a national energy emergency took direct aim at the authority provided by the Endangered Species Act. It orders federal departments to treat energy production as an emergency, which could help expedite approval of energy projects that might otherwise be held up.

The order also convenes a committee to “identify obstacles to domestic energy infrastructure specifically deriving from implementation of the ESA or the Marine Mammal Protection Act,” another landmark conservation law. It states the committee could consider regulatory reforms, including “species listings,” as part of its work.

The Trump administration did not respond to a request for comment on the executive order. The order defines energy mostly as fossil fuels such as crude oil and and coal and does not include renewable energies such as wind power. It also states that energy production is an emergency because “an affordable and reliable domestic supply of energy is a fundamental requirement for the national and economic security of any nation.”

While environmentalists herald the Endangered Species Act as a landmark law, pro-development and free market interests have long criticized it for holding up the building of energy, infrastructure, housing and other projects. Some, including the influential Heartland Institute, applauded Trump's declaration of an energy emergency this week.

Conservatives have also decried the Endangered Species Act as inefficient. It took the U.S. Fish and Wildlife Service years to follow the process of potentially delisting the golden-cheeked warbler, a small songbird that breeds only in the forests of central Texas, said Connor Mighell, an attorney with Texas Public Policy Foundation, a free market research institute.

Trump's executive order could help stop the Endangered Species Act from resulting in drawn-out permitting processes and lengthy litigation, said Brent Bennett, energy policy director for Texas Public Policy Foundation.

“We're hoping that can improve some of the permitting processes and remove some of these barriers,” Bennett said.

But the act is critical to maintaining species threatened with extinction, environmentalists said. They cite whales such as the North Atlantic right whale, which numbers less than 400 and is vulnerable to collisions with ships and entanglement in fishing gear, as an example of an animal that must be protected under the act. The Rice's whale, which numbers even fewer and is vulnerable to disruption from oil drilling in the Gulf of Mexico, is another prime example, environmentalists said.

The nation's symbol, the bald eagle, is a perfect example of the importance and effectiveness of the Endangered Species Act, said Andrew Bowman, president of the conservation group Defenders of Wildlife.

“President Trump’s election to office did not come with a mandate to deny Americans a clean and healthy environment or destroy decades of conservation successes that have ensured the survival and recovery of some of America’s most iconic species, including the bald eagle, which was newly named our country’s national bird and is only with us today thanks to the Endangered Species Act," Bowman said.

Texas ranks as No. 2 manufacturing hub in U.S., behind only California

by the numbers

Texas ranks among the country’s biggest hubs for manufacturing, according to a new study.

The study, conducted by Chinese manufacturing components supplier YIJIN Hardware, puts Texas at No. 2 among the states when it comes to manufacturing-hub status. California holds the top spot.

YIJIN crunched data from the U.S. Census Bureau, International Trade Administration, and National Association of Manufacturers to analyze manufacturing activity in each state. The study weighed factors such as number of manufacturing establishments, number of manufacturing employees, total value of manufacturing output, total manufacturing exports and manufacturing’s share of a state’s gross domestic product.

Here are Texas’ figures for those categories:

  • 19,526 manufacturing establishments
  • 847,470 manufacturing employees
  • Total manufacturing output of $292.6 billion
  • Total manufacturing exports of $291.9 billion
  • 11.3 percent share of state GDP

According to Texas Economic Development & Tourism, the state’s largest manufacturing sectors include automotive, tech, petroleum, chemicals, and food and beverage.

“The Lone Star State is truly a manufacturing powerhouse,” the state agency says.

In an October speech, Texas Gov. Greg Abbott praised the state’s robust manufacturing industry.

“We are proud that Texas is home to a booming manufacturing sector,” he said. “Thanks to our strong manufacturing sector, ‘Made in Texas’ has never been a bigger brand.”

Houston is a cornerstone of Texas’ manufacturing industry. The region produces more than $75 billion worth of goods each year, according to the Greater Houston Partnership. That makes Houston the second-ranked U.S. metro area for manufacturing GDP. The more than 7,000 manufacturing establishments in the area employ over 223,000 people.

“As one of the most important industrial bases in the world, Houston has access to many global markets thanks to its central location within the U.S. and the Americas,” the partnership says.