Powering Up

Virtual power plant from Houston-area company debuts at CES

AISPEX's EnerVision platform enables users to sell excess energy back to the grid during demand peaks. Photo courtesy AISPEX.

Brookshire, Texas-based decentralized energy solution company AISPEX Inc. debuted its virtual power plant (VPP) platform, known as EnerVision, earlier this month at CES in Las Vegas.

EnerVision offers energy efficiency, savings and performance for residential, commercial and industrial users by combining state-of-the-art hardware with an AI-powered cloud platform. The VPP technology enables users to sell excess energy back to the grid during demand peaks.

AISPEX, or Advanced Integrated Systems for Power Exchange, has evolved from an EV charging solutions company into an energy systems innovator since it was founded in 2018. It focuses on integrating solar energy and decentralized systems to overcome grid limitations, reduce upgrade costs and accelerate electrification.

Regarding grid issues, the company hopes by leveraging decentralized solar power and Battery Energy Storage Systems (BESS), EnerVision can help bring energy generation closer to consumption, which can ease grid strain and enhance stability. EnerVision plans to do this by addressing “aging infrastructure, grid congestion, increasing electrification and the need for resilience against extreme weather and cyber threats,” according to the company.

One of the company's latest VPP products is SuperHub, which is an all-in-one charging station designed to combine components like solar panels, energy storage systems, fast EV chargers, mobile EV chargers and LCD display screens, into a unified, efficient solution.

“It supports clean energy generation and storage but also ensures seamless charging for electric vehicles while providing opportunities for communication or advertising through its built-in displays,” says Vivian Nie, a representative from AISPEX.

Also at CES, AISPEX displayed its REP Services, which offer flexible pricing, peak load management, and renewable energy options for end-to-end solutions, and its Integrated Systems, which combine solar power, battery storage, EV charging and LCD displays.

“We had the opportunity to meet new partners, reconnect with so many old friends, and dive into discussions about the future of e-mobility and energy solutions,” CEO Paul Nie said on LinkedIn.

In 2024, AISPEX installed its DC Fast chargers at two California Volkswagen locations.

Trending News

A View From HETI

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants.

Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team released two significant publications that made significant strides relating to carbon capture processes. The first, published in Nature Communications, introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process. Another, featured on the cover of ES&T Engineering, demonstrated a vanadium redox flow system capable of both capturing carbon and storing renewable energy.

“These publications reflect our group’s commitment to fundamental electrochemical innovation and real-world applicability,” Rahimi said in a news release. “From membraneless systems to scalable flow systems, we’re charting pathways to decarbonize hard-to-abate sectors and support the transition to a low-carbon economy.”

According to the researchers, the “A Membraneless Electrochemically Mediated Amine Regeneration for Carbon Capture” research paper marked the beginning of the team’s first focus. The research examined the replacement of costly ion-exchange membranes with gas diffusion electrodes. They found that the membranes were the most expensive part of the system, and they were also a major cause of performance issues and high maintenance costs.

The researchers achieved more than 90 percent CO2 removal (nearly 50 percent more than traditional approaches) by engineering the gas diffusion electrodes. According to PhD student and co-author of the paper Ahmad Hassan, the capture costs approximately $70 per metric ton of CO2, which is competitive with other innovative scrubbing techniques.

“By removing the membrane and the associated hardware, we’ve streamlined the EMAR workflow and dramatically cut energy use,” Hassan said in the news release. “This opens the door to retrofitting existing industrial exhaust systems with a compact, low-cost carbon capture module.”

The second breakthrough, published by PhD student Mohsen Afshari, displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge. The results suggested that the technology could potentially provide carbon removal and grid balancing when used with intermittent renewables, such as solar or wind power.

“Integrating carbon capture directly into a redox flow battery lets us tackle two challenges in one device,” Afshari said in the release. “Our front-cover feature highlights its potential to smooth out renewable generation while sequestering CO2.”

Trending News