switch flipped

Houston-area solar farm to light up Texas with clean power for 15,000 homes

Recurrent Energy's Liberty Solar project near Houston is now operational, adding 134 megawatts of clean energy capacity to power 15,000 homes annually in the MISO market. Photo via recurrentenergy.com

A clean energy developer and operator of solar and energy storage assets has announced the completion and commercial operation of a Houston-area farm that will power 15,000 homes a year.

Recurrent Energy's Liberty Solar project outside of Houston has powered on and will expand solar energy capacity in the Midcontinent Independent System Operator market. Recurrent Energy is an Austin-based a subsidiary of Canadian Solar.

“Projects like Liberty Solar are instrumental to meeting the soaring demand for electricity in Texas,” Executive Director of Texas Solar Power Association Mark Stover says in a news release. "We commend Recurrent Energy for pushing through the development process and working with corporate buyers to deliver new, predictable, clean power to the MISO region of Texas.”

Liberty Solar is in Liberty County, which is about 50 miles northeast of Houston and will be a 134 megawatt solar project. Customers include Autodesk Inc., Biogen Inc., EMD Electronics (the U.S. and Canada electronics business of Merck KGaA, Darmstadt, Germany), and Wayfair Inc.

“Investment in additional renewable capacity on the grid is essential to delivering more sustainable outcomes, and we believe that the Liberty Solar project will help make renewable energy more accessible in North America,” Joe Speicher, chief sustainability officer at Autodesk, adds in tje release. “Autodesk is committed to 100% renewable energy sourcing for our facilities, cloud services and hybrid workforce, and we are committed to leveraging our climate commitments to drive transformational change in our energy generation and deployment.”

Recurrent Energy celebrated the project by welcoming customers at Liberty Solar on October 23 for a guided tour and ribbon cutting ceremony.

“Liberty Solar is a fantastic project that expands Recurrent Energy’s project ownership in MISO,” Ismael Guerrero, CEO of Recurrent Energy, says in the release. “We are thrilled to complete this project on time and on budget in support of the renewable energy goals of our customers.”

Last year, Recurrent Energy scored $200 million in financing for the project, including $120 million in financing through Rabobank, Nord LB, and U.S. Bank in the form of construction debt, a letter-of-credit facility, and a term facility. In addition, U.S. Bancorp Impact Finance, a subsidiary of U.S. Bank, is providing $80 million in tax equity.

Trending News

A View From HETI

Ahmad Elgazzar, Haotian Wang and Shaoyun Hao were members of a Rice University team that recently published findings on how acid bubbling can improve CO2 reduction systems. Photo courtesy Rice.

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.

Trending News