A photo of BP's new solar farm in Texas. Photo via bp.com

Solar farms are booming and putting thousands of hungry sheep to work

Solar Power

On rural Texas farmland, beneath hundreds of rows of solar panels, a troop of stocky sheep rummage through pasture, casually bumping into one another as they remain committed to a single task: chewing grass.

The booming solar industry has found an unlikely mascot in sheep as large-scale solar farms crop up across the U.S. and in the plain fields of Texas. In Milam County, outside Austin, SB Energy operates the fifth-largest solar project in the country, capable of generating 900 megawatts of power across 4,000 acres.

How do they manage all that grass? With the help of about 3,000 sheep, which are better suited than lawnmowers to fit between small crevices and chew away rain or shine.

The proliferation of sheep on solar farms is part of a broader trend — solar grazing — that has exploded alongside the solar industry.

Agrivoltaics, a method using land for both solar energy production and agriculture, is on the rise with more than 60 solar grazing projects in the U.S., according to the National Renewable Energy Laboratory. The American Solar Grazing Association says 27 states engage in the practice.

"The industry tends to rely on gas-powered mowers, which kind of contradicts the purpose of renewables," SB Energy asset manager James Hawkins said.

A sunny opportunity
Putting the animals to work on solar fields also provides some help to the sheep and wool market, which has struggled in recent years. The inventory of sheep and lamb in Texas fell to 655,000 in January 2024, a 4% drop from the previous year, according to the most recent figures from the U.S. Department of Agriculture.

Because solar fields use sunny, flat land that is often ideal for livestock grazing, the power plants have been used in coordination with farmers rather than against them.

Sheepherder JR Howard accidentally found himself in the middle of Texas' burgeoning clean energy transition. In 2021, he and his family began contracting with solar farms — sites with hundreds of thousands of solar modules — to use his sheep to eat the grass.

What was once a small business has turned into a full-scale operation with more than 8,000 sheep and 26 employees.

"Just the growth has been kind of crazy for us," said Howard, who named his company Texas Solar Sheep. "It's been great for me and my family."

Following the herd
Some agriculture experts say Howard's success reflects how solar farms have become a boon for some ranchers.

Reid Redden, a sheep farmer and solar vegetation manager in San Angelo, Texas, said a successful sheep business requires agricultural land that has become increasingly scarce.

"Solar grazing is probably the biggest opportunity that the sheep industry had in the United States in several generations," Redden said.

The response to solar grazing has been overwhelmingly positive in rural communities near South Texas solar farms where Redden raises sheep for sites to use, he said.

"I think it softens the blow of the big shock and awe of a big solar farm coming in," Redden said.

Fielding more research
Agrivoltaics itself isn't new. Solar farms are land-intensive and require a lot of space that could be used for food production. Agrivoltaics compensates by allowing the two to coexist, whether growing food or caring for livestock.

There is a lot still unknown about the full effects of solar grazing, said Nuria Gomez-Casanovas, an assistant professor in regenerative system ecology at Texas A&M University.

Not enough studies have been done to know the long-term environmental impacts, such as how viable the soil will be for future agriculture, although Gomez-Casanovas suspects solar grazing may improve sheep productivity because the panels provide shade and can be more cost-efficient than mowing.

"We really have more questions than answers," Gomez-Casanovas said. "There are studies that show that the land productivity is not higher versus solar alone or agriculture alone, so it's context-dependent."

As one of Texas' largest solar sheep operators, Howard has more clients than he can handle. He expects to add about 20 more employees by the end of this year, which would nearly double his current workforce. As for the sheep, he has enough already.

Recurrent Energy's Liberty Solar project near Houston is now operational, adding 134 megawatts of clean energy capacity to power 15,000 homes annually in the MISO market. Photo via recurrentenergy.com

Houston-area solar farm to light up Texas with clean power for 15,000 homes

switch flipped

A clean energy developer and operator of solar and energy storage assets has announced the completion and commercial operation of a Houston-area farm that will power 15,000 homes a year.

Recurrent Energy's Liberty Solar project outside of Houston has powered on and will expand solar energy capacity in the Midcontinent Independent System Operator market. Recurrent Energy is an Austin-based a subsidiary of Canadian Solar.

“Projects like Liberty Solar are instrumental to meeting the soaring demand for electricity in Texas,” Executive Director of Texas Solar Power Association Mark Stover says in a news release. "We commend Recurrent Energy for pushing through the development process and working with corporate buyers to deliver new, predictable, clean power to the MISO region of Texas.”

Liberty Solar is in Liberty County, which is about 50 miles northeast of Houston and will be a 134 megawatt solar project. Customers include Autodesk Inc., Biogen Inc., EMD Electronics (the U.S. and Canada electronics business of Merck KGaA, Darmstadt, Germany), and Wayfair Inc.

“Investment in additional renewable capacity on the grid is essential to delivering more sustainable outcomes, and we believe that the Liberty Solar project will help make renewable energy more accessible in North America,” Joe Speicher, chief sustainability officer at Autodesk, adds in tje release. “Autodesk is committed to 100% renewable energy sourcing for our facilities, cloud services and hybrid workforce, and we are committed to leveraging our climate commitments to drive transformational change in our energy generation and deployment.”

Recurrent Energy celebrated the project by welcoming customers at Liberty Solar on October 23 for a guided tour and ribbon cutting ceremony.

“Liberty Solar is a fantastic project that expands Recurrent Energy’s project ownership in MISO,” Ismael Guerrero, CEO of Recurrent Energy, says in the release. “We are thrilled to complete this project on time and on budget in support of the renewable energy goals of our customers.”

Last year, Recurrent Energy scored $200 million in financing for the project, including $120 million in financing through Rabobank, Nord LB, and U.S. Bank in the form of construction debt, a letter-of-credit facility, and a term facility. In addition, U.S. Bancorp Impact Finance, a subsidiary of U.S. Bank, is providing $80 million in tax equity.

Ken Nguyen, principal technical program manager at bp, joins the Houston Innovators Podcast to discuss the company's new partnership with NASA. Photo courtesy of bp

Podcast: Houston energy tech leader on breaking down industry silos, sustainable digitization

listen now

Ken Nguyen oversees the implementation of new technologies at bp, which has its United States headquarters in Houston, and that includes software and hardtech, from cybersecurity to the digitization of the industry, which is an integral part of bp's energy transition plan.

"For bp, we do feel like as we transition as an international oil and gas company into an integrated energy company and we lean into the energy transition, the adoption of new technology is a critical part of making that viable for the planet and for the company," he says on the Houston Innovators Podcast.

According to Nguyen, principal technical program manager at bp, the company has invested its resources into exploring energy transition technologies like electric vehicle charging — including opening a fast-charging station at its Houston office — and renewable energy, including a solar farm about 10 miles northeast of Corpus Christi.

Another technology bp is keen on is digital twin technology, which can be crucial for enhancing safety for bp personnel and reducing emissions.

Nguyen says digital twin technology "allows us to be able to design and mirror scenarios with real-time variables, such as weather, off-take demands, and volatility."

Recently, in order to explore innovation within these technology verticals, bp and NASA entered into a Space Act Agreement with NASA.

"Houston has always been known as the Space City, and we're also known as the Energy Capital of the World, but there hasn't always been collaboration," Nguyen says. "The challenges that NASA is facing is very similar to the challenges that the oil industry faces — we operate in very harsh environments, safety is the most critical aspect of our operation, and now the economic business model for NASA has changed."

Nguyen explains that while both bp and NASA are navigating similar challenges and changes within their industry, they are going about it in different ways. That's where the opportunity to collaborate comes in.

The partnership, which is still new and not fully fleshed out, will look at collaborative innovation into a few focus areas to start out with, including hydrogen storage and development, AI and general intelligence, robotics, and remote operations

"Houston continues to excel — in energy production and in space exploration — but by coming together," Nguyen says, "and for us to be able to tap into (NASA's) knowledge is tremendous. And we, within oil and gas, have a unique set of skills to blend into that with the hopes being that the city becomes this incubator for technology. The potential is there."

Talos Energy announced that it has entered into an agreement for the sale of its wholly owned subsidiary Talos Low Carbon Solutions to TotalEnergies. Photo via Getty Images

Talos Energy sells off low carbon arm to TotalEnergies in $148M deal

M&A moves

A Houston-based company is divesting its low-carbon subsidiary to TotalEnergies, which has its United States headquarters in Houston.

Talos Energy announced that it has entered into an agreement for the sale of its wholly owned subsidiary Talos Low Carbon Solutions LLC to TotalEnergies. The deal is for a purchase price of $125 million plus customary reimbursements, adjustments and retention of cash, which totals approximately $148 million.

According to a news release, Talos plans to use the proceeds from the sale to repay borrowings under its credit facility and for general corporate purposes. The sale includes Talos's entire carbon capture and sequestration business, which includes its three projects along the U.S. Gulf Coast with Bayou Bend CCS, Harvest Bend CCS, and Coastal Bend CCS.

There is an opportunity for additional future cash payments upon achievement of certain milestones at the Harvest Bend or Coastal Bend projects for Talos. More payments can be obtained also upon a sale of the aforementioned projects by TotalEnergies.

"Since TLCS's inception, we have successfully applied our energy expertise as an early mover aimed at developing decarbonization solutions along the U.S. Gulf Coast,” Talos President and CEO Timothy S. Duncan says in a news release. ”Strong market interest during our capital raise provided the strategic option to fully monetize the business to TotalEnergies, an established global leader in CCS development."

Talos Executive Vice President, Low Carbon Strategy and Chief Sustainability Officer Robin Fielder will continue to serve in her role for a transition period before leaving Talos.

"Robin and our entire CCS team did an outstanding job crystallizing value for Talos shareholders for a strong financial return," Duncan continues. "The transaction will further enable Talos to prioritize cash flow generation and optimal capital allocation in our core Upstream business. We are also continuing to explore business development and strategic M&A opportunities."

TotalEnergies is active in the Houston energy transition ecosystem and recently signed on as a partner at Greentown Houston. Last fall, the company also started commercial operations of its new solar farm, Myrtle Solar, just south of Houston.

Combining batteries with green energy is a fast-growing climate solution. Photo via Getty Images

Batteries and green energies like wind and solar combine for major climate solution across Texas, U.S.

team work

In the Arizona desert, a Danish company is building a massive solar farm that includes batteries that charge when the sun is shining and supply energy back to the electric grid when it's not.

Combining batteries with green energy is a fast-growing climate solution.

“Solar farms only produce when the sun shines, and the turbines only produce when the wind blows,” said Ørsted CEO Mads Nipper. “For us to maximize the availability of the green power, 24-7, we have to store some of it too.”

The United States is rapidly adding batteries, mostly lithium-ion type, to store energy at large scale. Increasingly, these are getting paired with solar and wind projects, like in Arizona. The agencies that run electric grids, utility companies and developers of renewable energies say combining technologies is essential for a green energy future.

Batteries allow renewables to replace fossil fuels like oil, gas and coal, while keeping a steady flow of power when sources like wind and solar are not producing. For example, when people are sleeping and thus using less electricity, the energy produced from wind blowing through the night can be stored in batteries — and used when demand is high during the day.

Juan Mendez, a resident of Tempe, Arizona, gets power from local utility Salt River Project, which is collaborating with Ørsted on the Eleven Mile Solar Center. As a state senator, Mendez pushed SRP to move to renewable energies.

He thinks the power company is still investing too much in gas and coal plants, including a major expansion planned for a natural gas plant in Coolidge, Arizona, near the solar center.

“This solar-plus-storage is a good step, but SRP needs to do more to provide clean energy and clean up our air and help address climate change," Mendez said.

The utility said it’s adding more renewables to its energy mix and recently pledged to zero out its emissions by 2050.

The U.S. has the second most electrical storage in the world, after China. In 2023, the U.S. added an estimated 7.5 gigawatts — 62% more than in 2022, according to the BloombergNEF and the Business Council for Sustainable Energy factbook. That amount can power 750,000 homes for a day and brings the total amount of installed capacity nationwide to nearly enough for 2 million homes for one day, according to BloombergNEF.

In the U.S., California leads in energy storage as it aggressively cuts greenhouse gas emissions. It has twice as much as any other state. Residential, commercial and utility-scale battery installations increased by 757% there over just four years, meaning there's now enough to power 6.6 million homes for up to four hours, according to the California Energy Commission.

That's partly because in 2013, the California Public Utilities Commission told utilities to buy energy storage with a target to be met by 2020. Since then, power companies have continued to add more batteries to help the state meet clean electricity requirements.

Southern California Edison is one utility adding thousands of hours of energy storage. It is putting in solar-plus-batteries to replace some power plants that burn natural gas and would typically supply electricity in the evening.

“If it’s just clean and not reliable, you really don’t have anything,” said William Walsh, vice president for energy procurement and management. “We need both.”

In California, batteries proved their value in September 2022, as the West was experiencing a long heat wave that sent temperatures into the triple digits. Electricity demand reached the highest the state had ever seen on Sept. 6, 2022, as people cranked up air conditioners.

Walsh credits the batteries added to the grid between 2020 and 2022 with helping to avoid blackouts. Two years earlier, there were rolling electricity outages in California during a similar extreme heat wave.

Texas has the second-most battery storage after California. Last month, Schneider Electric announced it's teaming up with energy company ENGIE North America on solar and battery systems in Texas to get closer to the French multinational’s 100% renewable energy goal in the U.S. and Canada. Before the Inflation Reduction Act, a major climate law passed in 2022, the deal and the necessary $80 million investment would not have been possible, said Hans Royal, Schneider Electric's senior director for renewable energy and carbon advisory.

Royal is advising other global Fortune 500 companies it works with to get into the market.

“The industry needs that, the grid needs it," said Royal.

Back in Arizona, Ørsted’s Eleven Mile Solar Center covers 2,000 acres in rural Pinal County. It has 857,000 solar panels and more than 2,000 cubes that look like large shipping containers but contain battery modules. Ørsted also has large solar and storage projects in Texas and Alabama, and in Europe.

When the Arizona facility opens this summer, most power from the solar farm will go to Facebook owner Meta's data center in Mesa. The solar power not needed by Meta, in addition to the power stored in the batteries, will go to the local utility's customers. The new batteries can ensure power to roughly 65,000 homes during peak hours of demand.

“What I think is exciting is just how rapidly this market is moving," said Yayoi Sekine, head of energy storage at BloombergNEF. “There's so much pressure for the U.S. and different regions to decarbonize, and storage is one of the major technologies to enable that. There's a lot of momentum."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Expert: Debunking the myth that Texas doesn't care about renewable energy

Guest Column

When most people think about Texas, wind turbines and solar panels may not be the first images that come to mind. But in reality, the state now leads the nation in both wind-powered electricity generation and utility-scale solar capacity. In 2024 alone, Texas added approximately 9,700 megawatts of solar and 4,374 megawatts of battery storage, outpacing all other energy sources in new generation capacity that year. So what’s driving Texas’ rapid rise as the renewable energy capital of the United States?

Leader in wind energy

Texas has been a national leader in wind energy for more than a decade, thanks to its vast open landscapes and consistent wind conditions, particularly in regions like West Texas and the Panhandle. These ideal geographic features have enabled the development of massive wind farms, giving Texas the largest installed wind capacity in the United States. Wind energy also plays a strategic role in balancing the grid and complements solar energy well, as it often peaks at night when solar output drops.

Battery storage growth

Increasing battery storage capacity is unlocking more potential from solar and wind. When intermittent energy sources like wind and solar go offline, batteries release stored electricity and provide stability to the Electric Reliability Council of Texas system. Excluding California, Texas has more battery storage than the rest of the United States combined, accounting for over 32% of all the capacity installed nationwide.

Solar electricity generation and utility-scale batteries within ERCOT power grid set records in summer 2024. Between June 1 and August 31, solar contributed nearly 25% of total power demand during mid-day hours. In the evening, as demand stayed high but solar output declined, battery discharges successfully filled the gap. Battery storage solutions are now a core element of ERCOT’s future capacity and demand planning.

Interest in creating a hydrogen economy

Texas is well positioned to become a national hub in the hydrogen economy. The state has everything needed to lead in this emerging space with low-cost natural gas, abundant and growing low carbon electricity, geology well suited for hydrogen and carbon storage, mature hydrogen demand centers, existing hydrogen pipelines, established port infrastructure and more. The state already has an existing hydrogen market with two-thirds of the country’s hydrogen transport infrastructure.

In 2023, the Texas Legislature created the Texas Hydrogen Production Policy Council, which found that:

  • Hydrogen could represent a grid-scale energy storage solution that can help support the increased development of renewable electricity from wind and solar. Renewable electricity that is converted to hydrogen can improve overall grid reliability, resilience and dispatchability.
  • The development of the hydrogen industry, along with its supporting infrastructure and its downstream markets within Texas, could attract billions of dollars of investment. This development may create hundreds of thousands of jobs - especially with younger generations who are passionate about climate science - and greatly boost the Texas economy.
  • Hydrogen supports the current energy economy in Texas as a critical component to both conventional refining and the growing production of new biofuels (such as renewable diesel and sustainable aviation fuel) within the state.

Legislative action and pressure to reduce carbon emissions

Texas has also seen key legislative actions and policies that have supported the growth of renewable energy in Texas. During the most recent legislative session, lawmakers decided that The Texas Energy Fund, a low-interest loan program aimed at encouraging companies to build more power infrastructure, will receive an additional $5 billion on top of the $5 billion lawmakers approved in 2023. Of that amount, $1.8 billion is earmarked to strengthen existing backup generators, which must be powered by a combination of solar, battery storage and natural gas. These funds signal growing institutional support for a diversified and more resilient energy grid.

Furthermore, there is growing pressure from investors, regulators and consumers to reduce carbon emissions, and as a result, private equity firms in the oil and gas sector are diversifying their portfolios to include wind, solar, battery storage and carbon capture projects. In 2022, private equity investment in renewable energy and clean technology surged to a record-high $26 billion.

The future of the renewable energy workforce

With renewable energy jobs projected to grow to 38 million globally by 2030, the sector is poised to be one of the most promising career landscapes of the future. Given that young people today are increasingly environmentally conscious, there is a powerful opportunity to engage students early and help them see how their values align with meaningful, purpose-driven careers in clean energy. Organizations like the Energy Education Foundation play a vital role in this effort by providing accessible, high-quality resources that bridge the gap between energy literacy and real-world impact. The nonprofit employs comprehensive, science-based educational initiatives to help students and educators explore complex energy topics through clear explanations and engaging learning tools, laying a strong foundation for informed, future-ready learners.

STEM and AI education, which are reshaping how young people think, build, and solve problems, provide a natural gateway into the renewable energy field. From robotics and coding to climate modeling and sustainable engineering, these learning experiences equip students with the critical skills and mindsets needed to thrive in a rapidly evolving energy economy. By investing in engaging, future-focused learning environments now and through leveraging trusted educational partners, like the Energy Education Foundation, we can help ensure that the next generation of learners are not just prepared to enter the clean energy workforce but are empowered to lead it.

With its rapidly growing wind, solar, battery and hydrogen sectors, Texas is redefining its energy identity. To sustain this momentum, the state must continue aligning education, policy, and innovation—not only to meet the energy demands of tomorrow, but to inspire and equip the next generation to lead the way toward a more sustainable, resilient and inclusive energy future.

---

Kristen Barley is the executive director of the Energy Education Foundation, a nonprofit dedicated to inspiring the next generation of energy leaders by providing comprehensive, engaging education that spans the entire energy spectrum.


DOE report warns of widespread power blackouts by 2030 amid grid challenges

grid report

Scheduled retirements of traditional power plants, dependence on energy sources like wind and solar, and the growth of energy-gobbling data centers put the U.S. — including Texas — at much greater risk of massive power outages just five years from now, a new U.S. Department of Energy report suggests.

The report says the U.S. power grid won’t be able to sustain the combined impact of plant closures, heavy reliance on renewable energy, and the boom in data center construction. As a result, the risk of power blackouts will be 100 times greater in 2030, according to the report.

“The status quo of more [plant] retirements and less dependable replacement generation is neither consistent with winning the AI race and ensuring affordable energy for all Americans, nor with continued grid reliability … . Absent intervention, it is impossible for the nation’s bulk power system to meet the AI growth requirements while maintaining a reliable power grid and keeping energy costs low for our citizens,” the report says.

Avoiding planned shutdowns of traditional energy plants, such as those fueled by coal and oil, would improve grid reliability, but a shortfall would still persist in the territory served by the Electric Reliability Council of Texas (ERCOT), particularly during the winter, the report says. ERCOT operates the power grid for the bulk of Texas.

According to the report, 104 gigawatts of U.S. power capacity from traditional plants is set to be phased out by 2030. “This capacity is not being replaced on a one-to-one basis,” says the report, “and losing this generation could lead to significant outages when weather conditions do not accommodate wind and solar generation.”

To meet reliability targets, ERCOT would need 10,500 megawatts of additional “perfect” capacity by 2030, the report says. Perfect capacity refers to maximum power output under ideal conditions.

“ERCOT continues to undergo rapid change, and supply additions will have a difficult time keeping up with demand growth,” Brent Nelson, managing director of markets and strategy at Ascend Analytics, a provider of data and analytics for the energy sector, said in a release earlier this summer. “With scarcity conditions ongoing and weather-dependent, expect a volatile market with boom years and bust years.”

Syzygy partners with fellow Houston co. on sustainable aviation fuel facility

SAF production

Houston-based Syzygy Plasmonics has announced a partnership with Velocys, another Houston company, on its first-of-its-kind sustainable aviation fuel (SAF) production project in Uruguay.

Velocys was selected to provide Fischer-Tropsch technology for the project. Fischer-Tropsch technology converts synthesis gas into liquid hydrocarbons, which is key for producing synthetic fuels like SAF.

Syzygy estimates that the project, known as NovaSAF 1, will produce over 350,000 gallons of SAF annually. It is backed by Uruguay’s largest dairy and agri-energy operations, Estancias del Lago, with permitting and equipment sourcing ongoing. Syzygy hopes to start operations by 2027.

"This project proves that profitable SAF production doesn't have to wait on future infrastructure," Trevor Best, CEO of Syzygy Plasmonics, said in a news release. "With Velocys, we're bringing in a complete, modular solution that drives down overall production costs and is ready to scale. Uruguay is only the start."

The NovaSAF 1 facility will convert dairy waste and biogas into drop-in jet fuel using renewable electricity and waste gas via its light-driven GHG e-Reforming technology. The facility is expected to produce SAF with at least an 80 percent reduction in carbon intensity compared to Jet A fuel.

Syzygy will use Velocys’ microFTL technology to convert syngas into high-yield jet fuel. Velocys’ microFTL will help maximize fuel output, which will assist in driving down the cost required to produce synthetic fuel.

"We're proud to bring our FT technology into a project that's changing the game," Matthew Viergutz, CEO of Velocys, added in the release. "This is what innovation looks like—fast, flexible, and focused on making SAF production affordable."