A photo of BP's new solar farm in Texas. Photo via bp.com

Solar farms are booming and putting thousands of hungry sheep to work

Solar Power

On rural Texas farmland, beneath hundreds of rows of solar panels, a troop of stocky sheep rummage through pasture, casually bumping into one another as they remain committed to a single task: chewing grass.

The booming solar industry has found an unlikely mascot in sheep as large-scale solar farms crop up across the U.S. and in the plain fields of Texas. In Milam County, outside Austin, SB Energy operates the fifth-largest solar project in the country, capable of generating 900 megawatts of power across 4,000 acres.

How do they manage all that grass? With the help of about 3,000 sheep, which are better suited than lawnmowers to fit between small crevices and chew away rain or shine.

The proliferation of sheep on solar farms is part of a broader trend — solar grazing — that has exploded alongside the solar industry.

Agrivoltaics, a method using land for both solar energy production and agriculture, is on the rise with more than 60 solar grazing projects in the U.S., according to the National Renewable Energy Laboratory. The American Solar Grazing Association says 27 states engage in the practice.

"The industry tends to rely on gas-powered mowers, which kind of contradicts the purpose of renewables," SB Energy asset manager James Hawkins said.

A sunny opportunity
Putting the animals to work on solar fields also provides some help to the sheep and wool market, which has struggled in recent years. The inventory of sheep and lamb in Texas fell to 655,000 in January 2024, a 4% drop from the previous year, according to the most recent figures from the U.S. Department of Agriculture.

Because solar fields use sunny, flat land that is often ideal for livestock grazing, the power plants have been used in coordination with farmers rather than against them.

Sheepherder JR Howard accidentally found himself in the middle of Texas' burgeoning clean energy transition. In 2021, he and his family began contracting with solar farms — sites with hundreds of thousands of solar modules — to use his sheep to eat the grass.

What was once a small business has turned into a full-scale operation with more than 8,000 sheep and 26 employees.

"Just the growth has been kind of crazy for us," said Howard, who named his company Texas Solar Sheep. "It's been great for me and my family."

Following the herd
Some agriculture experts say Howard's success reflects how solar farms have become a boon for some ranchers.

Reid Redden, a sheep farmer and solar vegetation manager in San Angelo, Texas, said a successful sheep business requires agricultural land that has become increasingly scarce.

"Solar grazing is probably the biggest opportunity that the sheep industry had in the United States in several generations," Redden said.

The response to solar grazing has been overwhelmingly positive in rural communities near South Texas solar farms where Redden raises sheep for sites to use, he said.

"I think it softens the blow of the big shock and awe of a big solar farm coming in," Redden said.

Fielding more research
Agrivoltaics itself isn't new. Solar farms are land-intensive and require a lot of space that could be used for food production. Agrivoltaics compensates by allowing the two to coexist, whether growing food or caring for livestock.

There is a lot still unknown about the full effects of solar grazing, said Nuria Gomez-Casanovas, an assistant professor in regenerative system ecology at Texas A&M University.

Not enough studies have been done to know the long-term environmental impacts, such as how viable the soil will be for future agriculture, although Gomez-Casanovas suspects solar grazing may improve sheep productivity because the panels provide shade and can be more cost-efficient than mowing.

"We really have more questions than answers," Gomez-Casanovas said. "There are studies that show that the land productivity is not higher versus solar alone or agriculture alone, so it's context-dependent."

As one of Texas' largest solar sheep operators, Howard has more clients than he can handle. He expects to add about 20 more employees by the end of this year, which would nearly double his current workforce. As for the sheep, he has enough already.

Recurrent Energy's Liberty Solar project near Houston is now operational, adding 134 megawatts of clean energy capacity to power 15,000 homes annually in the MISO market. Photo via recurrentenergy.com

Houston-area solar farm to light up Texas with clean power for 15,000 homes

switch flipped

A clean energy developer and operator of solar and energy storage assets has announced the completion and commercial operation of a Houston-area farm that will power 15,000 homes a year.

Recurrent Energy's Liberty Solar project outside of Houston has powered on and will expand solar energy capacity in the Midcontinent Independent System Operator market. Recurrent Energy is an Austin-based a subsidiary of Canadian Solar.

“Projects like Liberty Solar are instrumental to meeting the soaring demand for electricity in Texas,” Executive Director of Texas Solar Power Association Mark Stover says in a news release. "We commend Recurrent Energy for pushing through the development process and working with corporate buyers to deliver new, predictable, clean power to the MISO region of Texas.”

Liberty Solar is in Liberty County, which is about 50 miles northeast of Houston and will be a 134 megawatt solar project. Customers include Autodesk Inc., Biogen Inc., EMD Electronics (the U.S. and Canada electronics business of Merck KGaA, Darmstadt, Germany), and Wayfair Inc.

“Investment in additional renewable capacity on the grid is essential to delivering more sustainable outcomes, and we believe that the Liberty Solar project will help make renewable energy more accessible in North America,” Joe Speicher, chief sustainability officer at Autodesk, adds in tje release. “Autodesk is committed to 100% renewable energy sourcing for our facilities, cloud services and hybrid workforce, and we are committed to leveraging our climate commitments to drive transformational change in our energy generation and deployment.”

Recurrent Energy celebrated the project by welcoming customers at Liberty Solar on October 23 for a guided tour and ribbon cutting ceremony.

“Liberty Solar is a fantastic project that expands Recurrent Energy’s project ownership in MISO,” Ismael Guerrero, CEO of Recurrent Energy, says in the release. “We are thrilled to complete this project on time and on budget in support of the renewable energy goals of our customers.”

Last year, Recurrent Energy scored $200 million in financing for the project, including $120 million in financing through Rabobank, Nord LB, and U.S. Bank in the form of construction debt, a letter-of-credit facility, and a term facility. In addition, U.S. Bancorp Impact Finance, a subsidiary of U.S. Bank, is providing $80 million in tax equity.

Ken Nguyen, principal technical program manager at bp, joins the Houston Innovators Podcast to discuss the company's new partnership with NASA. Photo courtesy of bp

Podcast: Houston energy tech leader on breaking down industry silos, sustainable digitization

listen now

Ken Nguyen oversees the implementation of new technologies at bp, which has its United States headquarters in Houston, and that includes software and hardtech, from cybersecurity to the digitization of the industry, which is an integral part of bp's energy transition plan.

"For bp, we do feel like as we transition as an international oil and gas company into an integrated energy company and we lean into the energy transition, the adoption of new technology is a critical part of making that viable for the planet and for the company," he says on the Houston Innovators Podcast.

According to Nguyen, principal technical program manager at bp, the company has invested its resources into exploring energy transition technologies like electric vehicle charging — including opening a fast-charging station at its Houston office — and renewable energy, including a solar farm about 10 miles northeast of Corpus Christi.

Another technology bp is keen on is digital twin technology, which can be crucial for enhancing safety for bp personnel and reducing emissions.

Nguyen says digital twin technology "allows us to be able to design and mirror scenarios with real-time variables, such as weather, off-take demands, and volatility."

Recently, in order to explore innovation within these technology verticals, bp and NASA entered into a Space Act Agreement with NASA.

"Houston has always been known as the Space City, and we're also known as the Energy Capital of the World, but there hasn't always been collaboration," Nguyen says. "The challenges that NASA is facing is very similar to the challenges that the oil industry faces — we operate in very harsh environments, safety is the most critical aspect of our operation, and now the economic business model for NASA has changed."

Nguyen explains that while both bp and NASA are navigating similar challenges and changes within their industry, they are going about it in different ways. That's where the opportunity to collaborate comes in.

The partnership, which is still new and not fully fleshed out, will look at collaborative innovation into a few focus areas to start out with, including hydrogen storage and development, AI and general intelligence, robotics, and remote operations

"Houston continues to excel — in energy production and in space exploration — but by coming together," Nguyen says, "and for us to be able to tap into (NASA's) knowledge is tremendous. And we, within oil and gas, have a unique set of skills to blend into that with the hopes being that the city becomes this incubator for technology. The potential is there."

Talos Energy announced that it has entered into an agreement for the sale of its wholly owned subsidiary Talos Low Carbon Solutions to TotalEnergies. Photo via Getty Images

Talos Energy sells off low carbon arm to TotalEnergies in $148M deal

M&A moves

A Houston-based company is divesting its low-carbon subsidiary to TotalEnergies, which has its United States headquarters in Houston.

Talos Energy announced that it has entered into an agreement for the sale of its wholly owned subsidiary Talos Low Carbon Solutions LLC to TotalEnergies. The deal is for a purchase price of $125 million plus customary reimbursements, adjustments and retention of cash, which totals approximately $148 million.

According to a news release, Talos plans to use the proceeds from the sale to repay borrowings under its credit facility and for general corporate purposes. The sale includes Talos's entire carbon capture and sequestration business, which includes its three projects along the U.S. Gulf Coast with Bayou Bend CCS, Harvest Bend CCS, and Coastal Bend CCS.

There is an opportunity for additional future cash payments upon achievement of certain milestones at the Harvest Bend or Coastal Bend projects for Talos. More payments can be obtained also upon a sale of the aforementioned projects by TotalEnergies.

"Since TLCS's inception, we have successfully applied our energy expertise as an early mover aimed at developing decarbonization solutions along the U.S. Gulf Coast,” Talos President and CEO Timothy S. Duncan says in a news release. ”Strong market interest during our capital raise provided the strategic option to fully monetize the business to TotalEnergies, an established global leader in CCS development."

Talos Executive Vice President, Low Carbon Strategy and Chief Sustainability Officer Robin Fielder will continue to serve in her role for a transition period before leaving Talos.

"Robin and our entire CCS team did an outstanding job crystallizing value for Talos shareholders for a strong financial return," Duncan continues. "The transaction will further enable Talos to prioritize cash flow generation and optimal capital allocation in our core Upstream business. We are also continuing to explore business development and strategic M&A opportunities."

TotalEnergies is active in the Houston energy transition ecosystem and recently signed on as a partner at Greentown Houston. Last fall, the company also started commercial operations of its new solar farm, Myrtle Solar, just south of Houston.

Combining batteries with green energy is a fast-growing climate solution. Photo via Getty Images

Batteries and green energies like wind and solar combine for major climate solution across Texas, U.S.

team work

In the Arizona desert, a Danish company is building a massive solar farm that includes batteries that charge when the sun is shining and supply energy back to the electric grid when it's not.

Combining batteries with green energy is a fast-growing climate solution.

“Solar farms only produce when the sun shines, and the turbines only produce when the wind blows,” said Ørsted CEO Mads Nipper. “For us to maximize the availability of the green power, 24-7, we have to store some of it too.”

The United States is rapidly adding batteries, mostly lithium-ion type, to store energy at large scale. Increasingly, these are getting paired with solar and wind projects, like in Arizona. The agencies that run electric grids, utility companies and developers of renewable energies say combining technologies is essential for a green energy future.

Batteries allow renewables to replace fossil fuels like oil, gas and coal, while keeping a steady flow of power when sources like wind and solar are not producing. For example, when people are sleeping and thus using less electricity, the energy produced from wind blowing through the night can be stored in batteries — and used when demand is high during the day.

Juan Mendez, a resident of Tempe, Arizona, gets power from local utility Salt River Project, which is collaborating with Ørsted on the Eleven Mile Solar Center. As a state senator, Mendez pushed SRP to move to renewable energies.

He thinks the power company is still investing too much in gas and coal plants, including a major expansion planned for a natural gas plant in Coolidge, Arizona, near the solar center.

“This solar-plus-storage is a good step, but SRP needs to do more to provide clean energy and clean up our air and help address climate change," Mendez said.

The utility said it’s adding more renewables to its energy mix and recently pledged to zero out its emissions by 2050.

The U.S. has the second most electrical storage in the world, after China. In 2023, the U.S. added an estimated 7.5 gigawatts — 62% more than in 2022, according to the BloombergNEF and the Business Council for Sustainable Energy factbook. That amount can power 750,000 homes for a day and brings the total amount of installed capacity nationwide to nearly enough for 2 million homes for one day, according to BloombergNEF.

In the U.S., California leads in energy storage as it aggressively cuts greenhouse gas emissions. It has twice as much as any other state. Residential, commercial and utility-scale battery installations increased by 757% there over just four years, meaning there's now enough to power 6.6 million homes for up to four hours, according to the California Energy Commission.

That's partly because in 2013, the California Public Utilities Commission told utilities to buy energy storage with a target to be met by 2020. Since then, power companies have continued to add more batteries to help the state meet clean electricity requirements.

Southern California Edison is one utility adding thousands of hours of energy storage. It is putting in solar-plus-batteries to replace some power plants that burn natural gas and would typically supply electricity in the evening.

“If it’s just clean and not reliable, you really don’t have anything,” said William Walsh, vice president for energy procurement and management. “We need both.”

In California, batteries proved their value in September 2022, as the West was experiencing a long heat wave that sent temperatures into the triple digits. Electricity demand reached the highest the state had ever seen on Sept. 6, 2022, as people cranked up air conditioners.

Walsh credits the batteries added to the grid between 2020 and 2022 with helping to avoid blackouts. Two years earlier, there were rolling electricity outages in California during a similar extreme heat wave.

Texas has the second-most battery storage after California. Last month, Schneider Electric announced it's teaming up with energy company ENGIE North America on solar and battery systems in Texas to get closer to the French multinational’s 100% renewable energy goal in the U.S. and Canada. Before the Inflation Reduction Act, a major climate law passed in 2022, the deal and the necessary $80 million investment would not have been possible, said Hans Royal, Schneider Electric's senior director for renewable energy and carbon advisory.

Royal is advising other global Fortune 500 companies it works with to get into the market.

“The industry needs that, the grid needs it," said Royal.

Back in Arizona, Ørsted’s Eleven Mile Solar Center covers 2,000 acres in rural Pinal County. It has 857,000 solar panels and more than 2,000 cubes that look like large shipping containers but contain battery modules. Ørsted also has large solar and storage projects in Texas and Alabama, and in Europe.

When the Arizona facility opens this summer, most power from the solar farm will go to Facebook owner Meta's data center in Mesa. The solar power not needed by Meta, in addition to the power stored in the batteries, will go to the local utility's customers. The new batteries can ensure power to roughly 65,000 homes during peak hours of demand.

“What I think is exciting is just how rapidly this market is moving," said Yayoi Sekine, head of energy storage at BloombergNEF. “There's so much pressure for the U.S. and different regions to decarbonize, and storage is one of the major technologies to enable that. There's a lot of momentum."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-led project earns $1 million in federal funding for flood research

team work

A team from Rice University, the University of Texas at Austin and Texas A&M University have been awarded a National Science Foundation grant under the CHIRRP—or Confronting Hazards, Impacts and Risks for a Resilient Planet—program to combat flooding hazards in rural Texas.

The grant totals just under $1 million, according to a CHIRRP abstract.

The team is led by Avantika Gori, assistant professor of civil and environmental engineering at Rice. Other members include Rice’s James Doss-Gollin, Andrew Juan at Texas A&M University and Keri Stephens at UT Austin.

Researchers from Rice’s Severe Storm Prediction, Education and Evacuation from Disasters Center and Ken Kennedy Institute, Texas A&M’s Institute for A Disaster Resilient Texas and the Technology & Information Policy Institute at UT Austin are part of the team as well.

Their proposal includes work that introduces a “stakeholder-centered framework” to help address rural flood management challenges with community input.

“Our goal is to create a flood management approach that truly serves rural communities — one that’s driven by science but centers around the people who are impacted the most,” Gori said in a news release.

The project plans to introduce a performance-based system dynamics framework that integrates hydroclimate variability, hydrology, machine learning, community knowledge, and feedback to give researchers a better understanding of flood risks in rural areas.

The research will be implemented in two rural Texas areas that struggle with constant challenges associated with flooding. The case studies aim to demonstrate how linking global and regional hydroclimate variability with local hazard dynamics can work toward solutions.

“By integrating understanding of the weather dynamics that cause extreme floods, physics-based models of flooding and AI or machine learning tools together with an understanding of each community’s needs and vulnerabilities, we can better predict how different interventions will reduce a community’s risk,” Doss-Gollin said in a news release.

At the same time, the project aims to help communities gain a better understanding of climate science in their terms. The framework will also consider “resilience indicators,” such as business continuity, transportation access and other features that the team says more adequately address the needs of rural communities.

“This work is about more than flood science — it’s also about identifying ways to help communities understand flooding using words that reflect their values and priorities,” said Stephens. “We’re creating tools that empower communities to not only recover from disasters but to thrive long term.”

Can the Texas grid handle extreme weather conditions across regions?

Guest Column

From raging wildfires to dangerous dust storms and fierce tornadoes, Texans are facing extreme weather conditions at every turn across the state. Recently, thousands in the Texas Panhandle-South Plains lost power as strong winds ranging from 35 to 45 mph with gusts upwards of 65 mph blew through. Meanwhile, many North Texas communities are still reeling from tornadoes, thunderstorms, and damaging winds that occurred earlier this month.

A report from the National Oceanic and Atmospheric Administration found that Texas led the nation with the most billion-dollar weather and climate disasters in 2023, while a report from Texas A&M University researchers indicates Texas will experience twice as many 100-degree days, 30-50% more urban flooding and more intense droughts 15 years from now if present climate trends persist.

With the extreme weather conditions increasing in Texas and nationally, recovering from these disasters will only become harder and costlier. When it comes to examining the grid’s capacity to withstand these volatile changes, we’re past due. As of now, the grid likely isn’t resilient enough to make do, but there is hope.

Where does the grid stand now?

Investment from utility companies have resulted in significant improvements, but ongoing challenges remain, especially as extreme weather events become more frequent. While the immediate fixes have helped improve reliability for the time being, it won't be enough to withstand continuous extreme weather events. Grid resiliency will require ongoing efforts over one-time bandaid approaches.

What can be done?

Transmission and distribution infrastructure improvements must vary geographically because each region of Texas faces a different set of hazards. This makes a one-size-fits-all solution impossible. We’re already seeing planning and investment in various regions, but sweeping action needs to happen responsibly and quickly to protect our power needs.

After investigators determined that the 2024 Smokehouse Creek fire (the largest wildfire in Texas history) was caused by a decayed utility pole breaking, it raised the question of whether the Panhandle should invest more in wrapping poles with fire retardant material or covering wires so they are less likely to spark.

In response, Xcel Energy (the Panhandle’s version of CenterPoint) filed its initial System Resiliency Plan with the Public Utility Commission of Texas, with proposed investments to upgrade and strengthen the electric grid and ensure electricity for about 280,000 homes and businesses in Texas. Tailored to the needs of the Texas Panhandle and South Plains, the $539 million resiliency plan will upgrade equipment’s fire resistance to better stand up to extreme weather and wildfires.

Oncor, whose territories include Dallas-Fort Worth and Midland-Odessa, analyzed more than two decades of weather damage data and the impact on customers to identify the priorities and investments needed across its service area. In response, it proposed investing nearly $3 billion to harden poles, replace old cables, install underground wires, and expand the company's vegetation management program.

What about Houston?

While installing underground wires in a city like Dallas makes for a good investment in grid resiliency, this is not a practical option in the more flood-prone areas of Southeast Texas like Houston. Burying power lines is incredibly expensive, and extended exposure to water from flood surges can still cause damage. Flood surges are also likely to seriously damage substations and transformers. When those components fail, there’s no power to run through the lines, buried or otherwise.

As part of its resiliency plan for the Houston metro area, CenterPoint Energy plans to invest $5.75 billion to strengthen the power grid against extreme weather. It represents the largest single grid resiliency investment in CenterPoint’s history and is currently the most expensive resiliency plan filed by a Texas electric utility. The proposal calls for wooden transmission structures to be replaced with steel or concrete. It aims to replace or strengthen 5,000 wooden distribution poles per year until 2027.

While some of our neighboring regions focus on fire resistance, others must invest heavily in strengthening power lines and replacing wooden poles. These solutions aim to address the same critical and urgent goal: creating a resilient grid that is capable of withstanding the increasingly frequent and severe weather events that Texans are facing.

The immediate problem at hand? These solutions take time, meaning we’re likely to encounter further grid instability in the near future.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

The longest conveyer belt in the U.S. is moving sand in Texas

The Dune Express

It's longer than the width of Rhode Island, snakes across the oil fields of the southwest U.S. and crawls at 10 mph – too slow for a truck and too long for a train.

It's a new sight: the longest conveyer belt in America.

Atlas Energy Solutions, a Texas-based oil field company, has installed a 42-mile long conveyer belt to transport millions of tons of sand for hydraulic fracturing. The belt the company named “The Dune Express” runs from tiny Kermit, Texas, and across state borders into Lea County, New Mexico. Tall and lanky with lids that resemble solar modules, the steel structure could almost be mistaken for a roller coaster.

In remote West Texas, there are few people to marvel at the unusual machine in Kermit, a city with a population of less than 6,000, where the sand is typically hauled by tractor-trailers. During fracking, liquid is pumped into the ground at a high pressure to create holes, or fractures, that release oil. The sand helps keep the holes open as water, oil and gas flow through it.

But moving the sand by truck is usually a long and potentially dangerous process, according to CEO John Turner. He said massive trucks moving sand and other industrial goods are a common site in the oil-rich Permian Basin and pose a danger to other drivers.

“Pretty early on, the delivery of sand via truck was not only inefficient, it was dangerous,” he said.

The conveyor belt, with a freight capacity of 13 tons, was designed to bypass and trudge alongside traffic.

Innovation isn't new to the oil and gas industry, nor is the idea to use a conveyor belt to move materials around. Another conveyer belt believed to be the world’s longest conveyor — at 61 miles long — carries phosphorous from a mine in Western Sahara on the northwest coast of Africa, according to NASA Earth Observatory.

When moving sand by truck became a nuisance, an unprecedented and risky investment opportunity arose: constructing a $400 million machine to streamline the production of hydraulic fracturing. The company went public in March 2023, in part, to help pay for the conveyor belt and completed its first delivery in January, Turner said.

The sand sits in a tray-shaped pan with a lid that can be taken off at any point, but most of it gets offloaded into silos near the Texas and New Mexico border. Along its miles-long journey, the sand is sold and sent to fracking companies who move it by truck for the remainder of the trip.

Keeping the rollers on the belt aligned and making sure it runs smoothly are the biggest maintenance obstacles, according to Turner. The rollers are equipped with chips that signal when it's about to fail and need to be replaced. This helps prevent wear and tear and keep the machine running consistently, Turner said.

The belt cuts through a large oil patch where environmentalists have long raised concerns about the industry disturbing local habitats, including those of the sagebrush lizard, which was listed as an endangered species last year by the U.S. Fish and Wildlife Service.

“In addition to that, we know that the sand will expedite further drilling nearby,” said Luke Metzger, executive director of Environment Texas. “We could see more drilling than we otherwise would, which means more air pollution, more spills than we otherwise would.”

The Dune Express currently runs for about 12 to 14 hours a day at roughly half capacity but the company expects to it to be rolling along at all hours later this year.

In New Mexico, Lea County Commissioner Brad Weber said he hopes the belt alleviates traffic on a parallel highway where car crashes are frequent.

“I believe it’s going to make a very positive impact here,” he said.