plug in

bp's first fast-charging EV station opens at Houston headquarters

The new bp pulse station — the first bp pulse branded Gigahub in the U.S. — is open for business. Photo via bp.com

A Houston company has announced the completion of its new high-speed electric vehicle charging site.

The bp pulse branded Gigahub at bp's Houston campus — the first of its kind with its 24 high-speed charge points — is ready to power up EVs, Arcadis, a global design and consultancy organization for natural and built assets, announced.

"The opening of our first bp pulse Gigahub is a major step in bp pulse's plans to build out a national EV charging network," Sujay Sharma, CEO, bp pulse Americas, says in a news release. "EV drivers need access to reliable, fast, on-the-go charging to enable an exceptional customer experience. Working with leaders in the space, like Arcadis, is allowing us to deliver the charging experience EV drivers need in Houston and beyond."

The firm also reported that solar panel parking canopies might be added to the facility later, as well as expanding to include restrooms, a lounge, and convenience store, if needed. bp originally announced the project in March.

"We are proud to work with bp pulse on energy transition projects such as these that accelerate a planet positive future," Brooke Bonkoski, president of Resilience Environment US at Arcadis, adds. "Arcadis, like bp, is committed to moving the energy transition forward. Delivering this project in the City of Houston, the energy capital of the world, is particularly impactful."

Trending News

A View From HETI

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

Trending News