The new course will provide participants with insights on how to use robotics to enhance efficiency in data collection, AI data analysis tools for industry, risk management with AI, and more. Photo courtesy of UH

The University of Houston will launch its latest micro-credential course next month that focuses on how AI and robotics can be used in inspection processes for the energy industry.

Running from March 22 through April 22, the course is open to "engineers, technicians and industry professionals with advanced knowledge in the dynamic fields of robotics and AI," according to a statement from UH. It will combine weekly online lectures and in-person hands-on demonstrations and provide participants with insights on how to use robotics to enhance efficiency in data collection, AI data analysis tools for industry, risk management with AI, and more.

“By blending theoretical knowledge with practical applications and hands-on experience, the course aims to empower participants with the skills needed to evaluate and adopt these advanced technologies to address real-world challenges in asset management,” Vedhus Hoskere, assistant professor at the UH Cullen College of Engineering, said in a statement. “We hope that upskilling and knowledge gained from this course will help accelerate the adoption of AI and robotics and contribute to the advancement of safer and more resource-efficient energy infrastructure systems.”

Hoskere will teach the course module titled “Computer Vision and Deep Learning for Inspections.” He also recently received a $500,000 grant from the Texas Department of Transportation (TxDOT) to look at how to use drones, cameras, sensors and AI to support Texas' bridge maintenance programs.

Other leaders of the UH Energy course will include:

  • Kimberley Hayes, founder of Valkim Technologies: Lead speaker who will provide an overview and introduction of AI applications, standards and certification
  • Gangbing Song, Moores Professor of Mechanical Engineering at UH: Machine learning hands-on exercises
  • Pete Peterson, head of product management and marketing with XaaS Lab: Computer vision technology in the oil and gas industry
  • Matthew Alberts, head of project management with Future Technologies Venture Venture LLC: Use cases, workflow and optimizing inspections with AI and drones
  • Suchet Bargoti, chief technology officer at Abyss Solutions: AI and robots for integrity management.

Registration accepted up to the first day of the course and can be completed online.

UH Professor Vedhus Hoskere received a three-year, $505,286 grant from TxDOT for a bridge digitization project. Photo via uh.edu

Houston researcher earns $500,000 grant to tap into digital twin tech for bridge safety

transportation

A University of Houston professor has received a grant from the Texas Department of Transportation (TxDOT) to improve the efficiency and effectiveness of how bridges are inspected in the state.

The $505,286 grant will support the project of Vedhus Hoskere, assistant professor in the Civil and Environmental Engineering Department, over three years. The project, “Development of Digital Twins for Texas Bridges,” will look at how to use drones, cameras, sensors and AI to support Texas' bridge maintenance programs.

“To put this data in context, we create a 3D digital representation of these bridges, called digital twins,” Hoskere said in a statement. “Then, we use artificial intelligence methods to help us find and quantify problems to be concerned about. We’re particularly interested in any structural problems that we can identify - these digital twins help us monitor changes over time and keep a close eye on the bridge. The digital twins can be tremendously useful for the planning and management of our aging bridge infrastructure so that limited taxpayer resources are properly utilized.”

The project began in September and will continue through August 2026. Hoskere is joined on the project by Craig Glennie, the Hugh Roy and Lillie Cranz Cullen Distinguished Chair at Cullen College and director of the National Center for Airborne Laser Mapping, as the project’s co-principal investigator.

According to Hoskere, the project will have implications for Texas's 55,000 bridges (more than twice as many as any other state in the country), which need to be inspected every two years.

Outside of Texas, Hoskere says the project will have international impact on digital twin research. Hoskere chairs a sub-task group of the International Association for Bridge and Structural Engineering (IABSE).

“Our international efforts align closely with this project’s goals and the insights gained globally will enhance our work in Texas while our research at UH contributes to advancing bridge digitization worldwide,” he said. “We have been researching developing digital twins for inspections and management of various infrastructure assets over the past 8 years. This project provides us an opportunity to leverage our expertise to help TxDOT achieve their goals while also advancing the science and practice of better developing these digital twins.”

Last year another UH team earned a $750,000 grant from the National Science Foundation for a practical, Texas-focused project that uses AI. The team was backed by the NSF's Convergence Accelerator for its project to help food-insecure Texans and eliminate inefficiencies within the food charity system.

———

This article originally ran on InnovationMap.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Syzygy partners with fellow Houston co. on sustainable aviation fuel facility

SAF production

Houston-based Syzygy Plasmonics has announced a partnership with Velocys, another Houston company, on its first-of-its-kind sustainable aviation fuel (SAF) production project in Uruguay.

Velocys was selected to provide Fischer-Tropsch technology for the project. Fischer-Tropsch technology converts synthesis gas into liquid hydrocarbons, which is key for producing synthetic fuels like SAF.

Syzygy estimates that the project, known as NovaSAF 1, will produce over 350,000 gallons of SAF annually. It is backed by Uruguay’s largest dairy and agri-energy operations, Estancias del Lago, with permitting and equipment sourcing ongoing. Syzygy hopes to start operations by 2027.

"This project proves that profitable SAF production doesn't have to wait on future infrastructure," Trevor Best, CEO of Syzygy Plasmonics, said in a news release. "With Velocys, we're bringing in a complete, modular solution that drives down overall production costs and is ready to scale. Uruguay is only the start."

The NovaSAF 1 facility will convert dairy waste and biogas into drop-in jet fuel using renewable electricity and waste gas via its light-driven GHG e-Reforming technology. The facility is expected to produce SAF with at least an 80 percent reduction in carbon intensity compared to Jet A fuel.

Syzygy will use Velocys’ microFTL technology to convert syngas into high-yield jet fuel. Velocys’ microFTL will help maximize fuel output, which will assist in driving down the cost required to produce synthetic fuel.

"We're proud to bring our FT technology into a project that's changing the game," Matthew Viergutz, CEO of Velocys, added in the release. "This is what innovation looks like—fast, flexible, and focused on making SAF production affordable."

How carbon capture works and the debate about whether it's a future climate solution

Energy Transition

Power plants and industrial facilities that emit carbon dioxide, the primary driver of global warming, are hopeful that Congress will keep tax credits for capturing the gas and storing it deep underground.

The process, called carbon capture and sequestration, is seen by many as an important way to reduce pollution during a transition to renewable energy.

But it faces criticism from some conservatives, who say it is expensive and unnecessary, and from environmentalists, who say it has consistently failed to capture as much pollution as promised and is simply a way for producers of fossil fuels like oil, gas and coal to continue their use.

Here's a closer look.

How does the process work?

Carbon dioxide is a gas produced by burning of fossil fuels. It traps heat close to the ground when released to the atmosphere, where it persists for hundreds of years and raises global temperatures.

Industries and power plants can install equipment to separate carbon dioxide from other gases before it leaves the smokestack. The carbon then is compressed and shipped — usually through a pipeline — to a location where it’s injected deep underground for long-term storage.

Carbon also can be captured directly from the atmosphere using giant vacuums. Once captured, it is dissolved by chemicals or trapped by solid material.

Lauren Read, a senior vice president at BKV Corp., which built a carbon capture facility in Texas, said the company injects carbon at high pressure, forcing it almost two miles below the surface and into geological formations that can hold it for thousands of years.

The carbon can be stored in deep saline or basalt formations and unmineable coal seams. But about three-fourths of captured carbon dioxide is pumped back into oil fields to build up pressure that helps extract harder-to-reach reserves — meaning it's not stored permanently, according to the International Energy Agency and the U.S. Environmental Protection Agency.

How much carbon dioxide is captured?

The most commonly used technology allows facilities to capture and store around 60% of their carbon dioxide emissions during the production process. Anything above that rate is much more difficult and expensive, according to the IEA.

Some companies have forecast carbon capture rates of 90% or more, “in practice, that has never happened,” said Alexandra Shaykevich, research manager at the Environmental Integrity Project’s Oil & Gas Watch.

That's because it's difficult to capture carbon dioxide from every point where it's emitted, said Grant Hauber, a strategic adviser on energy and financial markets at the Institute for Energy Economics and Financial Analysis.

Environmentalists also cite potential problems keeping it in the ground. For example, last year, agribusiness company Archer-Daniels-Midland discovered a leak about a mile underground at its Illinois carbon capture and storage site, prompting the state legislature this year to ban carbon sequestration above or below the Mahomet Aquifer, an important source of drinking water for about a million people.

Carbon capture can be used to help reduce emissions from hard-to-abate industries like cement and steel, but many environmentalists contend it's less helpful when it extends the use of coal, oil and gas.

A 2021 study also found the carbon capture process emits significant amounts of methane, a potent greenhouse gas that’s shorter-lived than carbon dioxide but traps over 80 times more heat. That happens through leaks when the gas is brought to the surface and transported to plants.

About 45 carbon-capture facilities operated on a commercial scale last year, capturing a combined 50 million metric tons of carbon dioxide — a tiny fraction of the 37.8 gigatonnes of carbon dioxide emissions from the energy sector alone, according to the IEA.

It's an even smaller share of all greenhouse gas emissions, which amounted to 53 gigatonnes for 2023, according to the latest report from the European Commission’s Emissions Database for Global Atmospheric Research.

The Institute for Energy Economics and Financial Analysis says one of the world's largest carbon capture utilization and storage projects, ExxonMobil’s Shute Creek facility in Wyoming, captures only about half its carbon dioxide, and most of that is sold to oil and gas companies to pump back into oil fields.

Future of US tax credits is unclear

Even so, carbon capture is an important tool to reduce carbon dioxide emissions, particularly in heavy industries, said Sangeet Nepal, a technology specialist at the Carbon Capture Coalition.

“It’s not a substitution for renewables ... it’s just a complementary technology,” Nepal said. “It’s one piece of a puzzle in this broad fight against the climate change.”

Experts say many projects, including proposed ammonia and hydrogen plants on the U.S. Gulf Coast, likely won't be built without the tax credits, which Carbon Capture Coalition Executive Director Jessie Stolark says already have driven significant investment and are crucial U.S. global competitiveness.

Houston renewable fuel company expands reach with latest acquisition

fueling up

Houston-based Freedom CNG, a provider and distributor of compressed renewable natural gas, has acquired ComTech Energy, a Canada-based provider of on-site mobile refueling for compressed renewable natural gas. The purchase price wasn’t disclosed.

The acquisition allows Freedom CNG to adopt a hub-and-spoke operational model, allowing customers to move away from fixed fueling infrastructure with low-carbon energy solutions across North America, according to a news release.

In conjunction with the deal, ComTech President James Ro has joined Freedom CNG as chief commercial and strategy officer.

“As we expand our footprint in low‑carbon fuel solutions, acquiring ComTech Energy marks an important step in enhancing our ability to deliver efficient, innovative fueling infrastructure,” Nick Kurtenbach, president and chief financial officer of Freedom CNG, said in the release. The acquisition, he added, “allows us to offer a more comprehensive suite of solutions that support the transition to cleaner energy and meet the evolving needs of our customers.”

Freedom CNG’s North American footprint now spans more than 25 fueling stations for compressed renewable natural gas and over 60 operations and maintenance sites across the U.S. and Canada.

This is the third acquisition for Freedom CNG in the last two months. It also recently acquired Colorado-based X3 CNG and Utah-based Lancer Energy, according to a representative from Freedom CNG, this summer. The company services regional trucks, buses and service vehicles, as well as heavy construction, agriculture, data centers and other sectors.

Last year, funds affiliated with alternative asset manager Apollo bought a majority stake in Freedom CNG, which was founded in 2012. The value of the deal wasn’t disclosed.

“Freedom has developed a strong portfolio of [renewable natural gas] fueling stations with meaningful growth potential driven by established relationships with blue-chip customers and attractive new development opportunities,” Apollo partner Scott Browning said in 2024.