Vicki Hollub, president and CEO of Occidental, said the company's Stratos DAC project is on track to begin capturing CO2 later this year. Photo via 1pointfive.com

Houston-based Occidental Petroleum is gearing up to start removing CO2 from the atmosphere at its $1.3 billion direct air capture (DAC) project in the Midland-Odessa area.

Vicki Hollub, president and CEO of Occidental, said during the company’s recent second-quarter earnings call that the Stratos project — being developed by carbon capture and sequestration subsidiary 1PointFive — is on track to begin capturing CO2 later this year.

“We are immensely proud of the achievements to date and the exceptional record of safety performance as we advance towards commercial startup,” Hollub said of Stratos.

Carbon dioxide captured by Stratos will be stored underground or be used for enhanced oil recovery.

Oxy says Stratos is the world’s largest DAC facility. It’s designed to pull 500,000 metric tons of carbon dioxide from the air and either store it underground or use it for enhanced oil recovery. Enhanced oil recovery extracts oil from unproductive reservoirs.

Most of the carbon credits that’ll be generated by Stratos through 2030 have already been sold to organizations such as Airbus, AT&T, All Nippon Airways, Amazon, the Houston Astros, the Houston Texans, JPMorgan, Microsoft, Palo Alto Networks and TD Bank.

The infrastructure business of investment manager BlackRock has pumped $550 million into Stratos through a joint venture with 1PointFive.

As it gears up to kick off operations at Stratos, Occidental is also in talks with XRG, the energy investment arm of the United Arab Emirates-owned Abu Dhabi National Oil Co., to form a joint venture for the development of a DAC facility in South Texas. Occidental has been awarded up to $650 million from the U.S. Department of Energy to build the South Texas DAC hub.

The South Texas project, to be located on the storied King Ranch, will be close to industrial facilities and energy infrastructure along the Gulf Coast. Initially, the roughly 165-square-mile site is expected to capture 500,000 metric tons of carbon dioxide per year, with the potential to store up to 3 billion metric tons of CO2 per year.

“We believe that carbon capture and DAC, in particular, will be instrumental in shaping the future energy landscape,” Hollub said.

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

UH researchers make breakthrough in cutting carbon capture costs

Carbon breakthrough

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants.

Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team released two significant publications that made significant strides relating to carbon capture processes. The first, published in Nature Communications, introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process. Another, featured on the cover of ES&T Engineering, demonstrated a vanadium redox flow system capable of both capturing carbon and storing renewable energy.

“These publications reflect our group’s commitment to fundamental electrochemical innovation and real-world applicability,” Rahimi said in a news release. “From membraneless systems to scalable flow systems, we’re charting pathways to decarbonize hard-to-abate sectors and support the transition to a low-carbon economy.”

According to the researchers, the “A Membraneless Electrochemically Mediated Amine Regeneration for Carbon Capture” research paper marked the beginning of the team’s first focus. The research examined the replacement of costly ion-exchange membranes with gas diffusion electrodes. They found that the membranes were the most expensive part of the system, and they were also a major cause of performance issues and high maintenance costs.

The researchers achieved more than 90 percent CO2 removal (nearly 50 percent more than traditional approaches) by engineering the gas diffusion electrodes. According to PhD student and co-author of the paper Ahmad Hassan, the capture costs approximately $70 per metric ton of CO2, which is competitive with other innovative scrubbing techniques.

“By removing the membrane and the associated hardware, we’ve streamlined the EMAR workflow and dramatically cut energy use,” Hassan said in the news release. “This opens the door to retrofitting existing industrial exhaust systems with a compact, low-cost carbon capture module.”

The second breakthrough, published by PhD student Mohsen Afshari, displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge. The results suggested that the technology could potentially provide carbon removal and grid balancing when used with intermittent renewables, such as solar or wind power.

“Integrating carbon capture directly into a redox flow battery lets us tackle two challenges in one device,” Afshari said in the release. “Our front-cover feature highlights its potential to smooth out renewable generation while sequestering CO2.”

Houston-area executives, including ExxonMobil Corp. CEO Darren Woods, have claimed spots on Fortune’s list of the 100 Most Powerful People in Business. Photo via Getty Images.

2 Houston energy execs among Fortune’s most powerful people in business

power people

Two Houston-area energy executives have been named to Fortune’s list of the 100 Most Powerful People in Business.

Darren Woods, chairman and CEO of ExxonMobil Corp., appears at No. 34 on the list, and Mike Wirth, chairman and CEO of Chevron Corp., lands at No. 90. Woods showed up on last year’s inaugural list, while Wirth debuted on the list this year.

Woods assumed the top job at Spring-based ExxonMobil in 2017.

“Woods worked his way up through the ranks of the oil giant, first serving as a planning analyst in 1992, and later as vice president and senior vice president,” according to Fortune.

Under Woods’ watch, ExxonMobil has grown substantially. For instance, the company wrapped up its nearly $60 billion acquisition of Dallas-based oil and gas exploration and production company Pioneer Natural Resources in 2024.

Last year, ExxonMobil posted revenue of nearly $350 billion. The company relocated its headquarters to Spring from the Dallas-Fort Worth suburb of Irving in 2023.

Wirth became chairman and CEO of Houston-based Chevron in 2018.

“While Chevron continues to grow its oil and gas business from West Texas to Kazakhstan, the company is investing more in hydrogen, renewable fuels and sustainable aviation fuel, carbon capture, and, most recently, lithium extraction,” according to Fortune.

In terms of revenue, Chevron is the country’s second-largest oil and gas company, behind ExxonMobil. Last year, Chevron posted revenue of almost $202.8 billion.

With Wirth at the helm, Chevron has expanded its footprint. In July, for example, the company completed its $53 billion acquisition of New York City-based energy company Hess Corp. The deal, announced in October 2023, was delayed by a now-resolved legal battle against ExxonMobil and China National Offshore Oil Corp. over Hess’ plentiful oil assets in Guyana.

In 2024, Chevron announced it was moving its headquarters to Houston from Northern California.

Jensen Huang, president and CEO of Nvidia, claimed the No. 1 spot. The technology company announced plans to produce AI supercomputers at a Houston-area factory earlier this year.

“It’s one piece of a puzzle in this broad fight against the climate change.” Photo via Getty Images

How carbon capture works and the debate about whether it's a future climate solution

Energy Transition

Power plants and industrial facilities that emit carbon dioxide, the primary driver of global warming, are hopeful that Congress will keep tax credits for capturing the gas and storing it deep underground.

The process, called carbon capture and sequestration, is seen by many as an important way to reduce pollution during a transition to renewable energy.

But it faces criticism from some conservatives, who say it is expensive and unnecessary, and from environmentalists, who say it has consistently failed to capture as much pollution as promised and is simply a way for producers of fossil fuels like oil, gas and coal to continue their use.

Here's a closer look.

How does the process work?

Carbon dioxide is a gas produced by burning of fossil fuels. It traps heat close to the ground when released to the atmosphere, where it persists for hundreds of years and raises global temperatures.

Industries and power plants can install equipment to separate carbon dioxide from other gases before it leaves the smokestack. The carbon then is compressed and shipped — usually through a pipeline — to a location where it’s injected deep underground for long-term storage.

Carbon also can be captured directly from the atmosphere using giant vacuums. Once captured, it is dissolved by chemicals or trapped by solid material.

Lauren Read, a senior vice president at BKV Corp., which built a carbon capture facility in Texas, said the company injects carbon at high pressure, forcing it almost two miles below the surface and into geological formations that can hold it for thousands of years.

The carbon can be stored in deep saline or basalt formations and unmineable coal seams. But about three-fourths of captured carbon dioxide is pumped back into oil fields to build up pressure that helps extract harder-to-reach reserves — meaning it's not stored permanently, according to the International Energy Agency and the U.S. Environmental Protection Agency.

How much carbon dioxide is captured?

The most commonly used technology allows facilities to capture and store around 60% of their carbon dioxide emissions during the production process. Anything above that rate is much more difficult and expensive, according to the IEA.

Some companies have forecast carbon capture rates of 90% or more, “in practice, that has never happened,” said Alexandra Shaykevich, research manager at the Environmental Integrity Project’s Oil & Gas Watch.

That's because it's difficult to capture carbon dioxide from every point where it's emitted, said Grant Hauber, a strategic adviser on energy and financial markets at the Institute for Energy Economics and Financial Analysis.

Environmentalists also cite potential problems keeping it in the ground. For example, last year, agribusiness company Archer-Daniels-Midland discovered a leak about a mile underground at its Illinois carbon capture and storage site, prompting the state legislature this year to ban carbon sequestration above or below the Mahomet Aquifer, an important source of drinking water for about a million people.

Carbon capture can be used to help reduce emissions from hard-to-abate industries like cement and steel, but many environmentalists contend it's less helpful when it extends the use of coal, oil and gas.

A 2021 study also found the carbon capture process emits significant amounts of methane, a potent greenhouse gas that’s shorter-lived than carbon dioxide but traps over 80 times more heat. That happens through leaks when the gas is brought to the surface and transported to plants.

About 45 carbon-capture facilities operated on a commercial scale last year, capturing a combined 50 million metric tons of carbon dioxide — a tiny fraction of the 37.8 gigatonnes of carbon dioxide emissions from the energy sector alone, according to the IEA.

It's an even smaller share of all greenhouse gas emissions, which amounted to 53 gigatonnes for 2023, according to the latest report from the European Commission’s Emissions Database for Global Atmospheric Research.

The Institute for Energy Economics and Financial Analysis says one of the world's largest carbon capture utilization and storage projects, ExxonMobil’s Shute Creek facility in Wyoming, captures only about half its carbon dioxide, and most of that is sold to oil and gas companies to pump back into oil fields.

Future of US tax credits is unclear

Even so, carbon capture is an important tool to reduce carbon dioxide emissions, particularly in heavy industries, said Sangeet Nepal, a technology specialist at the Carbon Capture Coalition.

“It’s not a substitution for renewables ... it’s just a complementary technology,” Nepal said. “It’s one piece of a puzzle in this broad fight against the climate change.”

Experts say many projects, including proposed ammonia and hydrogen plants on the U.S. Gulf Coast, likely won't be built without the tax credits, which Carbon Capture Coalition Executive Director Jessie Stolark says already have driven significant investment and are crucial U.S. global competitiveness.

Planckton Data co-founders were recently featured on Energy Tech Startups Podcast. Courtesy photo

How Planckton Data is building the sustainability label every industry will need

now streaming

There’s a reason “carbon footprint” became a buzzword. It sounds like something we should know. Something we should measure. Something that should be printed next to the calorie count on a label.

But unlike calories, a carbon footprint isn’t universal, standardized, or easy to calculate. In fact, for most companies—especially in energy and heavy industry—it’s still a black box.

That’s the problem Planckton Data is solving.

On this episode of the Energy Tech Startups Podcast, Planckton Data co-founders Robin Goswami and Sandeep Roy sit down to explain how they’re turning complex, inconsistent, and often incomplete emissions data into usable insight. Not for PR. Not for green washing. For real operational and regulatory decisions.

And they’re doing it in a way that turns sustainability from a compliance burden into a competitive advantage.

From calories to carbon: The label analogy that actually works

If you’ve ever picked up two snack bars and compared their calorie counts, you’ve made a decision based on transparency. Robin and Sandeep want that same kind of clarity for industrial products.

Whether it’s a shampoo bottle, a plastic feedstock, or a specialty chemical—there’s now consumer and regulatory pressure to know exactly how sustainable a product is. And to report it.

But that’s where the simplicity ends.

Because unlike food labels, carbon labels can’t be standardized across a single factory. They depend on where and how a product was made, what inputs were used, how far it traveled, and what method was used to calculate the data.

Even two otherwise identical chemicals—one sourced from a refinery in Texas and the other in Europe—can carry very different carbon footprints, depending on logistics, local emission factors, and energy sources.

Planckton’s solution is built to handle exactly this level of complexity.

AI that doesn’t just analyze

For most companies, supply chain emissions data is scattered, outdated, and full of gaps.

That’s where Planckton’s use of AI becomes transformative.

  • It standardizes data from multiple suppliers, geographies, and formats.
  • It uses probabilistic models to fill in the blanks when suppliers don’t provide details.
  • It applies industry-specific product category rules (PCRs) and aligns them with evolving global frameworks like ISO standards and GHG Protocol.
  • It helps companies model decarbonization pathways, not just calculate baselines.

This isn’t generative AI for show. It’s applied machine learning with a purpose: helping large industrial players move from reporting to real action.

And it’s not a side tool. For many of Planckton’s clients, it’s becoming the foundation of their sustainability strategy.

From boardrooms to smokestacks: Where the pressure is coming from

Planckton isn’t just chasing early adopters. They’re helping midstream and upstream industrial suppliers respond to pressure coming from two directions:

  1. Downstream consumer brands—especially in cosmetics, retail, and CPG—are demanding footprint data from every input supplier.
  2. Upstream regulations—especially in Europe—are introducing reporting requirements, carbon taxes, and supply chain disclosure laws.

The team gave a real-world example: a shampoo brand wants to differentiate based on lower emissions. That pressure flows up the value chain to the chemical suppliers. Who, in turn, must track data back to their own suppliers.

It’s a game of carbon traceability—and Planckton helps make it possible.

Why Planckton focused on chemicals first

With backgrounds at Infosys and McKinsey, Robin and Sandeep know how to navigate large-scale digital transformations. They also know that industry specificity matters—especially in sustainability.

So they chose to focus first on the chemicals sector—a space where:

  • Supply chains are complex and often opaque.
  • Product formulations are sensitive.
  • And pressure from cosmetics, packaging, and consumer brands is pushing for measurable, auditable impact data.

It’s a wedge into other verticals like energy, plastics, fertilizers, and industrial manufacturing—but one that’s already showing results.

Carbon accounting needs a financial system

What makes this conversation unique isn’t just the product. It’s the co-founders’ view of the ecosystem.

They see a world where sustainability reporting becomes as robust as financial reporting. Where every company knows its Scope 1, 2, and 3 emissions the way it knows revenue, gross margin, and EBITDA.

But that world doesn’t exist yet. The data infrastructure isn’t there. The standards are still in flux. And the tooling—until recently—was clunky, manual, and impossible to scale.

Planckton is building that infrastructure—starting with the industries that need it most.

Houston as a launchpad (not just a legacy hub)

Though Planckton has global ambitions, its roots in Houston matter.

The city’s legacy in energy and chemicals gives it a unique edge in understanding real-world industrial challenges. And the growing ecosystem around energy transition—investors, incubators, and founders—is helping companies like Planckton move fast.

“We thought we’d have to move to San Francisco,” Robin shares. “But the resources we needed were already here—just waiting to be activated.”

The future of sustainability is measurable—and monetizable

The takeaway from this episode is clear: measuring your carbon footprint isn’t just good PR—it’s increasingly tied to market access, regulatory approval, and bottom-line efficiency.

And the companies that embrace this shift now—using platforms like Planckton—won’t just stay compliant. They’ll gain a competitive edge.

Listen to the full conversation with Planckton Data on the Energy Tech Startups Podcast:

Hosted by Jason Ethier and Nada Ahmed, the Digital Wildcatters’ podcast, Energy Tech Startups, delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


HETI has supported efforts to bring CCUS to a broader commercial scale since the initiative’s inception. Image via Getty Images

Texas gets one step closer to CCUS permitting authority

The View From HETI

This month, the U.S. Environmental Protection Agency (EPA) announced its proposed approval of Texas request for permitting authority under the Safe Drinking Water Act (SDWA) for Class VI underground injection wells for carbon capture, utilization and storage (CCUS) in the state. The State of Texas already has permitting authority for Class I-V injection wells. Granting authority for Class VI wells recognizes that Texas is well positioned to protect its underground sources of drinking water while also advancing economic opportunity and energy security.

“In the Safe Drinking Water Act, Congress laid out a clear vision for delegating decision-making from EPA to states that have local expertise and understand their water resources, geology, communities, and opportunities for economic growth,” said EPA Administrator Lee Zeldin in a news release. “EPA is taking a key step to support cooperative federalism by proposing to approve Texas to permit Class VI wells in the state.”

The Greater Houston Partnership’s Houston Energy Transition Initiative (HETI) has supported efforts to bring CCUS to a broader commercial scale since the initiative’s inception. Earlier this year, HETI commissioned a “study of studies” by Texas A&M University’s Energy Institute and Mary K. O’Connor Process Safety Center on the operational history and academic literature of CCUS safety in the United States. The report revealed that with state and federal regulations as well as technical and engineering technologies available today, CCUS is safe and presents a very low risk of impacts to human life. This is useful research for stakeholders interested in learning more about CCUS.

“The U.S. EPA’s proposal to approve Texas’ application for Class VI well permitting authority is yet another example of Texas’ continued leadership in meeting the dual challenge of producing more energy with less emissions,” said Jane Stricker, Senior Vice President of Energy at the Greater Houston Partnership and Executive Director of the Houston Energy Transition Initiative. “We applaud the U.S. EPA and Texas Railroad Commission for their collaborative efforts to ensure the supply of safe, affordable and reliable energy, and we call on all stakeholders to voice their support for the application during the public comment period.”

The U.S. EPA has announced a public comment period that will include a virtual public hearing on July 24, 2025 from 5-8 pm and conclude on July 31, 2025.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Chevron names latest cohort of energy transition fellows at Rice University

energy fellowship

Chevron and Rice University have named 10 graduate students to the second cohort of the Chevron Energy Graduate Fellowship.

The students come from various departments at Rice and are working on innovations that reduce emissions or improve upon low-carbon technology. Fellows will each receive a $10,000 award to support their research along with the opportunity to connect with "industry experts who can provide valuable insight on scaling technologies from the lab to commercial application," according to Rice.

The fellows will present projects during a cross-university virtual symposium in the spring.

The 2025-26 Chevron Energy Graduate Fellows and their research topics include:

  • Cristel Carolina Brindis Flores, Molecular Simulations of CO₂ and H₂ for Geostorage
  • Davide Cavuto, Intensification of Floating Catalyst Chemical Vapor Deposition for Carbon Nanotubes Synthesis
  • Jaewoo Kim, Distributed Acoustic Sensing for In-situ Stress Monitoring in Enhanced Geothermal Systems
  • Jessica Hema Persaud, Understanding Tin Perovskite Crystallization Dynamics for All-Perovskite Tandems
  • Johanna Ikabu Bangala, Upcycling Methane-derived Zero-Valent Carbon for Sustainable Agriculture
  • Kashif Liaqat, From Waste to Resource: Increased Sustainability Through Hybrid Waste Heat Recovery Systems for Data Centers and Industry
  • Md Abid Shahriar Rahman Saadi, Advancing Sustainable Structural, Energy and Food Systems through Engineering of Biopolymers
  • Ratnika Gupta, Micro-Silicon/Carbon Nanotube Composite Anodes with Metal-free Current Collector for High Performance Li-Ion Batteries
  • Wei Ping Lam, Electrifying Chemical Manufacturing: High-Pressure Electrochemical CO₂ Capture and Conversion
  • William Schmid, Light-Driven Thermal Desalination Using Transient Solar Illumination

“Through this fellowship program, we can support outstanding graduate students from across the university who are conducting cutting-edge research across a variety of fields,” Carrie Masiello, director of the Rice Sustainability Institute, said in a news release. “This year, our 2026 Chevron Fellows are working on research that reflects the diversity of the sustainability research at Rice … and these scholarly endeavors exemplify the breadth and depth of research enabled by Chevron’s generous support.”

The Chevron Fellows program launched at Rice last year, naming 10 graduate students to the inaugural cohort. It is funded by Chevron and was created through a partnership between the Rice Sustainability Institute. Chevron launched a similar program at the University of Houston in 2023.

“Rice University continues to be an exceptional partner in advancing energy innovation,” Chris Powers, director of exploration commercial and portfolio at Chevron, added in the release. “The Chevron Energy Fellows program showcases the brilliance and drive of Rice graduate students, whose research in areas like carbon conversion, solar materials and geothermal sensing is already shaping the future of sustainable energy. We’re proud to celebrate their achievements and look forward to the impact they’ll continue to make across the energy landscape.”

Houston clean energy company to develop hybrid renewable project in Port Arthur

power project

Houston-based clean energy company Diligence Offshore Services has announced a strategic partnership with Florida-based floating solar manufacturing company AccuSolar for the development of a renewable energy project in the Port Arthur area.

Known as the Pleasure Island Power Collective, it will be built on 2,275 acres across Pleasure Island and Sabine Lake. It is expected to generate 391 megawatts of clean power, alongside a utility-scale battery energy storage system. It will also feature a 225-megawatt coastal onshore wind farm, with energy produced on-site used to power a data center for adaptive superintelligence, making it entirely self-sustained by renewable sources, according to the company.

AccuSolar will design and manufacture the project and power will be distributed through the Canaan Energy Corridor

“We are incredibly proud to partner with a fellow U.S. company like AccuSolar,” Harry C. Crawford III, founder and managing member of Diligence Offshore, said in a news release. “Their expertise in American manufacturing and floating solar technology is essential to the success of the Pleasure Island Power Collective.”

The project is expected to bring economic growth and a significant number of manufacturing jobs to the area during the construction phase and long-term operations.

Diligence Offshore is pursuing a DPA Title 1 DX rating under the Defense Production Act to help advance the project's development schedule, according to the release, which could lead to immediate manufacturing jobs.

“This partnership not only strengthens our domestic supply chain but also accelerates our vision to bring economic freedom and climate resilience to the Gulf Coast,” Crawford added in the release.

Houston organization proposes Gulf Coast index for hydrogen market

hydrogen index

The Clean Hydrogen Buyers Alliance has proposed an index aimed at bringing transparency to pricing in the emerging hydrogen market.

The Houston-based alliance said the Gulf Coast Hydrogen Index, based on real-time data, would provide more clarity to pricing in the global market for hydrogen. The benchmarking effort is being designed to benefit clean hydrogen buyers, sellers and investors. The index would help position the U.S. “as the trading anchor for hydrogen’s next chapter as a globally traded commodity,” the alliance said.

According to ResearchAndMarkets.com, the global market for clean hydrogen was valued at $200 billion in 2024 and is projected to reach $700 billion by 2040.

John Flory, president of the alliance, said the lack of a pricing index has relegated hydrogen to niche-market status.

“Capital is waiting. Buyers are ready. But until now, there’s been no credible, transparent pricing signal to guide clean hydrogen investing or contracting,” Edward Morse, co-chairman of the Clean Hydrogen Transaction Advisory Committee, said in a news release.

The index would treat the Gulf Coast as the primary delivery hub for pipeline-grade hydrogen in three categories: basic, low-carbon and ultra-low-carbon. It would be similar to the Henry Hub index for pricing of natural gas.

Roger Ballentine, co-chairman of the clean energy advisory committee, said the hydrogen index would build confidence in this energy source among government agencies, companies and investors. A Henry Hub-style benchmark for hydrogen “provides clarity, reduces risk, and lays the foundation for clean energy to become a globally traded commodity critical to decarbonization,” he said.

The Gulf Coast, with Texas as the focal point, is key to the evolution of the U.S. clean hydrogen economy, according to the Fuel Cell and Hydrogen Energy Association.

At the core of the Gulf Coast’s role is the U.S. Department of Energy's selection of the Gulf Coast as one of the country’s seven regional hubs for clean hydrogen. However, the DOE has proposed cutting funding for the HyVelocity Gulf Coast Hydrogen Hub, a $1.2 billion development in Texas and Louisiana by AES, Air Liquide, Chevron, ExxonMobil, MHI Hydrogen Infrastructure and Ørsted, according to a new list of proposed DOE funding cancellations.