seeing green

AT&T makes deal with Oxy for carbon credits

Here's 1PoinFive's newest customer on its Texas CCUS project. Photo via 1pointfive.com

Telecommunications giant AT&T has agreed to purchase carbon removal credits from 1PointFive, the carbon capture, utilization, and sequestration (CCUS) subsidiary of Houston-based Occidental Petroleum.

Financial details weren’t disclosed.

The carbon credits will be tied to STRATOS, 1PointFive’s first large-scale direct air capture (DAC) facility. The billion-dollar project is being built near Odessa.

“AT&T’s carbon removal credit purchase is another proof point of the vital role that [DAC] can play in providing a high-integrity and durable solution to help organizations address their emissions,” Michael Avery, president and general manager of 1PointFive, says in a news release.

The AT&T deal comes just one month after 1PointFive announced a similar agreement with Milwaukee-based Rockwell Automation, which specializes in industrial automation and digital transformation.

In November, Occidental announced that New York City-based investment manager BlackRock was chipping in $550 million as part of a joint venture to build STRATOS. The project, set to be completed in 2025, is designed to capture up to 500,000 metric tons of carbon emissions once it’s fully online.

Under 1PointFive’s deal with Dallas-based AT&T, CO2 underpinning the removal credits will be sucked out of the air and stored in underground salt-water formations.

In conjunction with the DAC deal, 1PointFive has joined AT&T’s Connected Climate Initiative, an effort aimed at reducing greenhouse gas emissions by one gigaton by 2035.

Trending News

A View From HETI

Researchers have secured $3.3 million in funding to develop an AI-powered subsurface sensing system aimed at improving the safety and efficiency of underground power line installation. Photo via Getty Images

Researchers from the University of Houston — along with a Hawaiian company — have received $3.3 million in funding to explore artificial intelligence-backed subsurface sensing system for safe and efficient underground power line installation.

Houston's power lines are above ground, but studies show underground power is more reliable. Installing underground power lines is costly and disruptive, but the U.S. Department of Energy, in an effort to find a solution, has put $34 million into its new GOPHURRS program, which stands for Grid Overhaul with Proactive, High-speed Undergrounding for Reliability, Resilience, and Security. The funding has been distributed across 12 projects in 11 states.

“Modernizing our nation’s power grid is essential to building a clean energy future that lowers energy costs for working Americans and strengthens our national security,” U.S. Secretary of Energy Jennifer M. Granholm says in a DOE press release.

UH and Hawaii-based Oceanit are behind one of the funded projects, entitled “Artificial Intelligence and Unmanned Aerial Vehicle Real-Time Advanced Look-Ahead Subsurface Sensor.”

The researchers are looking a developing a subsurface sensing system for underground power line installation, potentially using machine learning, electromagnetic resistivity well logging, and drone technology to predict and sense obstacles to installation.

Jiefu Chen, associate professor of electrical and computer engineering at UH, is a key collaborator on the project, focused on electromagnetic antennas installed on UAV and HDD drilling string. He's working with Yueqin Huang, assistant professor of information science technology, who leads the geophysical signal processing and Xuqing Wu, associate professor of computer information systems, responsible for integrating machine learning.

“Advanced subsurface sensing and characterization technologies are essential for the undergrounding of power lines,” says Chen in the release. “This initiative can enhance the grid's resilience against natural hazards such as wildfires and hurricanes.”

“If proven successful, our proposed look-ahead subsurface sensing system could significantly reduce the costs of horizontal directional drilling for installing underground utilities,” Chen continues. “Promoting HDD offers environmental advantages over traditional trenching methods and enhances the power grid’s resilience.”

Trending News