A list of proposed DOE funding cancellations shows potential cuts for Houston-area companies. Photo via Getty Images.

The U.S. Department of Energy has proposed cutting $1.2 billion in funding for the HyVelocity Gulf Coast Hydrogen Hub, a clean energy project backed by AES, Air Liquide, Chevron, ExxonMobil, Mitsubishi Power Americas and Ørsted.

The HyVelocity project, which would produce clean hydrogen, appears on a new list of proposed DOE funding cancellations. The list was obtained by Latitude Media.

As of November, HyVelocity had already received $22 million of the potential $1.2 billion in DOE funding.

Other than the six main corporate backers, supporters of HyVelocity include the Center for Houston’s Future, Houston Advanced Research Center, Port Houston, University of Texas at Austin, Shell, the Texas governor’s office, Texas congressional delegation, and the City of Fort Worth.

Kristine Cone, a spokeswoman for GTI Energy, the hub’s administrator, told EnergyCapital that it hadn’t gotten an update from DOE about the hub’s status.

The list also shows the Magnolia Sequestration Hub in Louisiana, being developed by Occidental Petroleum subsidiary 1PointFive, could lose nearly $19.8 million in federal funding and the subsidiary’s South Texas Direct Air Capture (DAC) Hub on the King Ranch in Kleberg County could lose $50 million. In September, 1Point5 announced the $50 million award for its South Texas hub would be the first installment of up to $500 million in federal funding for the project.

Other possible DOE funding losses for Houston-area companies on the list include:

  • A little over $100 million earmarked for Houston-based BP Carbon Solutions to develop carbon storage projects
  • $100 million earmarked for Dow to produce battery-grade solvents for lithium-ion batteries. Dow operates chemical plants in Deer Park and LaPorte
  • $39 million earmarked for Daikin Comfort Technologies North America to produce energy-efficient heat pumps. The HVAC company operates the Daikin Texas Technology Park in Waller
  • Nearly $6 million earmarked for Houston-based Baker Hughes Energy Transition to reduce methane emissions from flares
  • $3 million earmarked for Spring-based Chevron to explore development of a DAC hub in Northern California
  • Nearly $2.9 million earmarked for Houston-based geothermal energy startup Fervo Energy’s geothermal plant in Utah
Vicki Hollub, president and CEO of Occidental, said the company's Stratos DAC project is on track to begin capturing CO2 later this year. Photo via 1pointfive.com

Oxy's $1.3B Texas carbon capture facility on track to​ launch this year

gearing up

Houston-based Occidental Petroleum is gearing up to start removing CO2 from the atmosphere at its $1.3 billion direct air capture (DAC) project in the Midland-Odessa area.

Vicki Hollub, president and CEO of Occidental, said during the company’s recent second-quarter earnings call that the Stratos project — being developed by carbon capture and sequestration subsidiary 1PointFive — is on track to begin capturing CO2 later this year.

“We are immensely proud of the achievements to date and the exceptional record of safety performance as we advance towards commercial startup,” Hollub said of Stratos.

Carbon dioxide captured by Stratos will be stored underground or be used for enhanced oil recovery.

Oxy says Stratos is the world’s largest DAC facility. It’s designed to pull 500,000 metric tons of carbon dioxide from the air and either store it underground or use it for enhanced oil recovery. Enhanced oil recovery extracts oil from unproductive reservoirs.

Most of the carbon credits that’ll be generated by Stratos through 2030 have already been sold to organizations such as Airbus, AT&T, All Nippon Airways, Amazon, the Houston Astros, the Houston Texans, JPMorgan, Microsoft, Palo Alto Networks and TD Bank.

The infrastructure business of investment manager BlackRock has pumped $550 million into Stratos through a joint venture with 1PointFive.

As it gears up to kick off operations at Stratos, Occidental is also in talks with XRG, the energy investment arm of the United Arab Emirates-owned Abu Dhabi National Oil Co., to form a joint venture for the development of a DAC facility in South Texas. Occidental has been awarded up to $650 million from the U.S. Department of Energy to build the South Texas DAC hub.

The South Texas project, to be located on the storied King Ranch, will be close to industrial facilities and energy infrastructure along the Gulf Coast. Initially, the roughly 165-square-mile site is expected to capture 500,000 metric tons of carbon dioxide per year, with the potential to store up to 3 billion metric tons of CO2 per year.

“We believe that carbon capture and DAC, in particular, will be instrumental in shaping the future energy landscape,” Hollub said.

Palo Alto Networks has agreed to purchase 10,000 tons of carbon dioxide removal credits from 1PointFive's DAC facility in Texas. Photo via 1pointfive.com

1PointFive secures new buyer for Texas CO2 removal project​

seeing green

Houston’s Occidental Petroleum Corp., or Oxy, and its subsidiary 1PointFive have secured another carbon removal credit deal for its $1.3 billion direct air capture (DAC) project, Stratos.

California-based Palo Alto Networks has agreed to purchase 10,000 tons of carbon dioxide removal (CDR) credits over five years from the project, according to a news release.

The company joins others like Microsoft, Amazon, AT&T, Airbus, the Houston Astros and the Houston Texans that have agreed to buy CDR credits from 1Point5.

"Collaborating with 1PointFive in this carbon removal credit agreement highlights our proactive approach toward exploring innovative solutions for a greener future,” BJ Jenkins, president of Palo Alto Networks, said in the release.

The Texas-based Stratos project is slated to come online this year near Odessa. It's being developed through a joint venture with investment manager BlackRock and is designed to capture up to 500,000 metric tons of CO2 per year. The U.S Environmental Protection Agency recently approved Class VI permits for the project.

DAC technology pulls CO2 from the air at any location, not just where carbon dioxide is emitted. Under the agreement with Palo Alto Networks and others, the carbon dioxide that underlies the credits will be stored in a below-the-surface saline aquifer and won’t be used to produce oil or gas.

“We look forward to collaborating with Palo Alto Networks and using Direct Air Capture to help advance their sustainability strategy,” Michael Avery, president and general manager of 1PointFive, said in the release. “This agreement continues to build momentum for high-integrity carbon removal while furthering DAC technology to support energy development in the United States.”

1PointFive, a subsidiary of Oxy, was granted the first-ever EPA permits for its large-scale carbon capture and sequestration facility in Texas. Photo via 1pointfive.com

Oxy subsidiary granted landmark EPA permits for carbon capture facility

making progress

Houston’s Occidental Petroleum Corp., or Oxy, and its subsidiary 1PointFive announced that the U.S Environmental Protection Agency approved its Class VI permits to sequester carbon dioxide captured from its STRATOS Direct Air Capture (DAC) facility near Odessa. These are the first such permits issued for a DAC project, according to a news release.

The $1.3 billion STRATOS project, which 1PointFive is developing through a joint venture with investment manager BlackRock, is designed to capture up to 500,000 metric tons of CO2 annually and is expected to begin commercial operations this year. DAC technology pulls CO2 from the air at any location, not just where carbon dioxide is emitted. Major companies, such as Microsoft and AT&T, have secured carbon removal credit agreements through the project.

The permits are issued under the Safe Drinking Water Act's Underground Injection Control program. The captured CO2 will be stored in geologic formations more than a mile underground, meeting the EPA’s review standards.

“This is a significant milestone for the company as we are continuing to develop vital infrastructure that will help the United States achieve energy security,” Vicki Hollub, Oxy president and CEO, said in a news release.“The permits are a catalyst to unlock value from carbon dioxide and advance Direct Air Capture technology as a solution to help organizations address their emissions or produce vital resources and fuels.”

Additionally, Oxy and 1PointFive announced the signing of a 25-year offtake agreement for 2.3 million metric tons of CO2 per year from CF Industries’ upcoming Bluepoint low-carbon ammonia facility in Ascension Parish, Louisiana.

The captured CO2 will be transported to and stored at 1PointFive’s Pelican Sequestration Hub, which is currently under development. Eventually, 1PointFive’s Pelican hub in Louisiana will include infrastructure to safely and economically sequester industrial emissions in underground geologic formations, similar to the STRATOS project.

“CF Industries’ and its partners' confidence in our Pelican Sequestration Hub is a validation of our expertise managing carbon dioxide and how we collaborate with industrial organizations to become their commercial sequestration partner,” Jeff Alvarez, President of 1PointFive Sequestration, said in a news release.

1PointFive is storing up to 20 million tons of CO2 per year, according to the company.

“By working together, we can unlock the potential of American manufacturing and energy production, while advancing industries that deliver high-quality jobs and economic growth,” Alvarez said in a news release.

Under its deal with Occidental, pipeline company Enterprise Products Partners will create a carbon dioxide pipeline system for 1PointFive’s Bluebonnet Sequestration Hub. Photo via 1pointfive.com

Oxy, Enterprise Products Partners to collaborate on carbon dioxide pipeline system for Texas project

coming soon

Occidental Petroleum’s carbon capture, utilization, and sequestration (CCUS) subsidiary has tapped another Houston-based company to develop a carbon dioxide pipeline and transportation network for one of its CCUS hubs.

Under its deal with Occidental, pipeline company Enterprise Products Partners will create a carbon dioxide pipeline system for 1PointFive’s Bluebonnet Sequestration Hub, which will span more than 55,000 acres in Chambers, Liberty, and Jefferson counties. The hub will be able to hold about 1.2 billion metric tons of carbon dioxide. The new pipeline network will be co-located with existing pipelines.

Enterprise Products Partners also will supply fee-based services for transporting CO2 emissions from industrial facilities near the Houston Ship Channel to the Bluebonnet hub.

“This agreement pairs our expertise managing large volumes of CO2 with Enterprise’s decades of midstream experience to bring confidence to industrial customers seeking a decarbonization solution,” Jeff Alvarez, president of 1PointFive’s sequestration business, says in a news release.

The Bluebonnet Sequestration Hub recently received funding from the U.S. Department of Energy (DOE) to help cover development costs.

“This hub is located between two of the largest industrial corridors in Texas so captured CO2 can be efficiently transported and safely sequestered,” Alvarez said in 2023. “Rather than starting from scratch with individual capture and sequestration projects, companies can plug into this hub for access to shared carbon infrastructure.”

Occidental subsidiary 1PointFive received federal funding — and more trending Houston energy transition news. Photo via 1pointfive.com

DOE doles out $36M to Oxy for carbon capture hubs

show me the money

Two carbon dioxide sequestration hubs being built by a subsidiary of Houston-based Occidental Petroleum have received a total of $36 million in funding from the U.S. Department of Energy.

The two 1PointFive projects that gained federal funding are the Bluebonnet Sequestration Hub, located in the Houston area’s Chambers County, and the Magnolia Sequestration Hub, located in Allen Parish, Louisiana.

The more than 55,000-acre Bluebonnet site will potentially store about 1.2 billion metric tons of carbon dioxide. The 26,000-acre Magnolia hub will offer about 300 million metric tons of CO2 storage capacity.

“We are using our over 50 years of carbon management expertise and experience developing projects at scale to deliver a proven solution that helps advance industrial decarbonization,” Jeff Alvarez, president of 1PointFive Sequestration, says in a news release.

The 1PointFive hubs are aimed at helping hard-to-decarbonize industries achieve climate goals.

The carbon sequestration process captures carbon dioxide in the air and then stores it. The 1PointFive hubs will inject captured CO2 into underground geological formations.

Fortune Business Insights predicts the value of the global market for carbon capture and sequestration (CCS) will climb from $3.54 billion in 2024 to $14.51 billion by 2032.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop energy-efficient film for AI chips

AI research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

---

This article originally appeared on our sister site, InnovationMap.

Energy expert: What 2025 revealed about the evolution of Texas power

guest column

2025 marked a pivotal year for Texas’ energy ecosystem. Rising demand, accelerating renewable integration, tightening reserve margins and growing industrial load reshaped the way policymakers, utilities and the broader market think about reliability.

This wasn’t just another year of operational challenges; it was a clear signal that the state is entering an era where growth and innovation must move together in unison if Texas is going to keep pace.

What happened in 2025 is already influencing the decisions utilities, regulators and large energy consumers will make in 2026 and beyond. If Texas is going to remain the nation’s proving ground for large-scale energy innovation, this year made one thing clear: we need every tool working together and working smarter.

What changed: Grid, policy & the growth of renewables

This year, ERCOT recorded one of the steepest demand increases in its history. From January through September 2025, electricity consumption reached 372 terawatt-hours (TWh), a 5 percent increase over the previous year and a 23 percent jump since 2021. That growth officially positions ERCOT as the fastest-expanding large grid in the country.

To meet this rising load, Texas leaned heavily on clean energy. Solar, wind and battery storage served approximately 36 percent of ERCOT’s electricity needs over the first nine months of the year, a milestone that showcased how quickly Texas has diversified its generation mix. Utility-scale solar surged to 45 TWh, up 50 percent year-over-year, while wind generation reached 87 TWh, a 36 percent increase since 2021.

Battery storage also proved its value. What was once niche is now essential: storage helped shift mid-day excess solar to evening peaks, especially during a historic week in early spring when Texas hit new highs for simultaneous wind, solar and battery output.

Still, natural gas remained the backbone of reliability. Dispatchable thermal resources supplied more than 50 percent of ERCOT’s power 92 percent of the time in Q3 2025. That dual structure of fast-growing renewables backed by firm gas generation is now the defining characteristic of Texas’s energy identity.

But growth cuts both ways. Intermittent generation is up, yet demand is rising faster. Storage is scaling, but not quite at the rate required to fill the evening reliability gap. And while new clean-energy projects are coming online rapidly, the reality of rising population, data center growth, electrification and heavy industrial expansion continues to outpace the additions.

A recent forecast from the Texas Legislative Study Group projects demand could climb another 14 percent by mid-2026, tightening reserve margins unless meaningful additions in capacity, or smarter systemwide usage, arrive soon.

What 2025 meant for the energy ecosystem

The challenges of 2025 pushed Texas to rethink reliability as a shared responsibility between grid operators, generation companies, large load customers, policymakers and consumers. The year underscored several realities:

1. The grid is becoming increasingly weather-dependent. Solar thrives in summer; wind dominates in spring and winter. But extreme heat waves and cold snaps also push demand to unprecedented levels. Reliability now hinges on planning for volatility, not just averages.

2. Infrastructure is straining under rapid load growth. The grid handled multiple stress events in 2025, but it required decisive coordination and emerging technologies, such as storage methods, to do so.

3. Innovation is no longer optional. Advanced forecasting, grid-scale batteries, demand flexibility tools, and hybrid renewable-gas portfolios are now essential components of grid stability.

4. Data centers and industrial electrification are changing the game. Large flexible loads present both a challenge and an opportunity. With proper coordination, they can help stabilize the grid. Without it, they can exacerbate conditions of scarcity.

Texas can meet these challenges, but only with intentional leadership and strong public-private collaboration.

The system-level wins of 2025

Despite volatility, 2025 showcased meaningful progress:

Renewables proved their reliability role. Hitting 36 percent of ERCOT’s generation mix for three consecutive quarters demonstrates that wind, solar and batteries are no longer supplemental — they’re foundational.

Storage emerged as a real asset for reliability. Battery deployments doubled their discharge records in early 2025, showing the potential of short-duration storage during peak periods.

The dual model works when balanced wisely. Natural gas continues to provide firm reliability during low-renewable hours. When paired with renewable growth, Texas gains resilience without sacrificing affordability.

Energy literacy increased across the ecosystem. Communities, utilities and even industrial facilities are paying closer attention to how loads, pricing signals, weather and grid conditions interact—a necessary cultural shift in a fast-changing market.

Where Texas goes in 2026

Texas heads into 2026 with several unmistakable trends shaping the road ahead. Rate adjustments will continue as utilities like CenterPoint request cost recovery to strengthen infrastructure, modernize outdated equipment and add the capacity needed to handle record-breaking growth in load.

At the same time, weather-driven demand is expected to stay unpredictable. While summer peaks will almost certainly set new records, winter is quickly becoming the bigger wild card, especially as natural gas prices and heating demand increasingly drive both reliability planning and consumer stress.

Alongside these pressures, distributed energy is set for real expansion. Rooftop solar, community battery systems and hybrid generation-storage setups are no longer niche upgrades; they’re quickly becoming meaningful grid assets that help support reliability at scale.

And underlying all of this is a cultural shift toward energy literacy. The utilities, regulators, businesses, and institutions that understand load flexibility, pricing signals and efficiency strategies will be the ones best positioned to manage costs and strengthen the grid. In a market that’s evolving this fast, knowing how we use energy matters just as much as knowing how much.

The big picture: 2025 as a blueprint for a resilient future

If 2025 showed us anything, it’s that Texas can scale innovation at a pace few states can match. We saw record renewable output, historic storage milestones and strong thermal performance during strain events. The Texas grid endured significant stress but maintained operational integrity.

But it also showed that reliability isn’t a static achievement; it’s a moving target. As population growth, AI and industrial electrification and weather extremes intensify, Texas must evolve from a reactive posture to a proactive one.

The encouraging part is that Texas has the tools, the talent and the market structure to build one of the most resilient and future-ready power ecosystems in the world. The test ahead isn’t whether we can generate enough power; it’s whether we can coordinate systems, technologies and market behavior fast enough to meet the moment.

And in 2026, that coordination is precisely where the opportunity lies.

———

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

Blackstone clears major step in acquisition of TXNM Energy

power deal

A settlement has been reached in a regulatory dispute over Blackstone Infrastructure’s pending acquisition of TXNM Energy, the parent company of Texas-New Mexico Power Co. , which provides electricity in the Houston area. The settlement still must be approved by the Public Utility Commission of Texas.

Aside from Public Utility Commission staffers, participants in the settlement include TXNM Energy, Texas cities served by Texas-New Mexico Power, the Texas Office of Public Utility Counsel, Texas Industrial Energy Consumers, Walmart and the Texas Energy Association for Marketers.

Texas-New Mexico Power, based in the Dallas-Fort Worth suburb of Lewisville, supplies electricity to more than 280,000 homes and businesses in Texas. Ten cities are in Texas-New Mexico Power’s Houston-area service territory:

  • Alvin
  • Angleton
  • Brazoria
  • Dickinson
  • Friendswood
  • La Marque
  • League City
  • Sweeny
  • Texas City
  • West Columbia

Under the terms of the settlement, Texas-New Mexico Power must:

  • Provide a $45.5 million rate credit to customers over 48 months, once the deal closes
  • Maintain a seven-member board of directors, including three unaffiliated directors as well as the company’s president and CEO
  • Embrace “robust” financial safeguards
  • Keep its headquarters within the utility’s Texas service territory
  • Avoid involuntary layoffs, as well as reductions of wages or benefits related to for-cause terminations or performance issues

The settlement also calls for Texas-New Mexico Power to retain its $4.2 billion five-year capital spending plan through 2029. The plan will help Texas-New Mexico Power cope with rising demand; peak demand increased about 66 percent from 2020 to 2024.

Citing the capital spending plan in testimony submitted to the Public Utility Commission, Sebastian Sherman, senior managing director of Blackstone Infrastructure, said Texas-New Mexico Power “needs the right support to modernize infrastructure, to strengthen the grid against wildfire and other risks, and to meet surging electricity demand in Texas.”

Blackstone Infrastructure, which has more than $64 billion in assets under management, agreed in August to buy TXNM Energy in a $11.5 billion deal.

Neal Walker, president of Texas-New Mexico Power, says the deal will help his company maintain a reliable, resilient grid, and offer “the financial resources necessary to thrive in this rapidly changing energy environment and meet the unprecedented future growth anticipated across Texas.”