sunsetting solar?

Shell shrinks renewable portfolio yet again with latest divestment

Shell’s Savion subsidiary, which the energy giant acquired in 2021, plans to sell about one-fourth of its solar generation and storage assets. Photo via shell.us

In a move aimed at focusing more on its oil and gas business, Houston-based Shell USA continues to scale back its wind and solar energy portfolio.

The Reuters news service reported February 29 that Shell’s Savion subsidiary, which the energy giant acquired in 2021, plans to sell about one-fourth of its solar generation and storage assets. These assets represent as much as 10.6 gigawatts of generation and storage capacity.

This development follows the completion in early February of deals for Kansas City, Missouri-based Savion to sell its 50 percent stake in a solar energy project in Ohio and for Houston-based Shell Wind Energy to sell its 60 percent stake in a wind farm in Texas.

The buyer of the Texas and Ohio assets was London-based investment manager InfraRed Capital Partners. Shell says it’ll manage both projects.

On its website, Savion says it has solar generation and storage projects underway totaling 38.1 gigawatts of capacity. Meanwhile, it has completed projects offering another 2.3 gigawatts of capacity.

During an investor presentation last June, Shell CEO Wael Sawan indicated that, for now, the company would put more of an emphasis on higher-profit oil and gas production and less of an emphasis on lower-profit renewable energy generation.

“It is critical that the world avoids dismantling the current energy system faster than we are able to build the clean energy system of the future. Oil and gas will continue to play a crucial role in the energy system for a long time to come, with demand reducing only gradually over time,” said Sawan, adding that “continued investment in oil and gas is critical to ensure a balanced energy transition.”

Sawan rose to the top post at Shell in January 2023, replacing Ben van Beurden. Sawan previously was Shell’s director of integrated gas, and renewables and energy solutions.

Reflecting Shell’s shifting priorities under Sawan’s leadership, the company’s spending in its renewables and energy solutions division fell 23 percent in 2023 compared with previous year, according to a Reuters analysis.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News