sunsetting solar?

Shell shrinks renewable portfolio yet again with latest divestment

Shell’s Savion subsidiary, which the energy giant acquired in 2021, plans to sell about one-fourth of its solar generation and storage assets. Photo via shell.us

In a move aimed at focusing more on its oil and gas business, Houston-based Shell USA continues to scale back its wind and solar energy portfolio.

The Reuters news service reported February 29 that Shell’s Savion subsidiary, which the energy giant acquired in 2021, plans to sell about one-fourth of its solar generation and storage assets. These assets represent as much as 10.6 gigawatts of generation and storage capacity.

This development follows the completion in early February of deals for Kansas City, Missouri-based Savion to sell its 50 percent stake in a solar energy project in Ohio and for Houston-based Shell Wind Energy to sell its 60 percent stake in a wind farm in Texas.

The buyer of the Texas and Ohio assets was London-based investment manager InfraRed Capital Partners. Shell says it’ll manage both projects.

On its website, Savion says it has solar generation and storage projects underway totaling 38.1 gigawatts of capacity. Meanwhile, it has completed projects offering another 2.3 gigawatts of capacity.

During an investor presentation last June, Shell CEO Wael Sawan indicated that, for now, the company would put more of an emphasis on higher-profit oil and gas production and less of an emphasis on lower-profit renewable energy generation.

“It is critical that the world avoids dismantling the current energy system faster than we are able to build the clean energy system of the future. Oil and gas will continue to play a crucial role in the energy system for a long time to come, with demand reducing only gradually over time,” said Sawan, adding that “continued investment in oil and gas is critical to ensure a balanced energy transition.”

Sawan rose to the top post at Shell in January 2023, replacing Ben van Beurden. Sawan previously was Shell’s director of integrated gas, and renewables and energy solutions.

Reflecting Shell’s shifting priorities under Sawan’s leadership, the company’s spending in its renewables and energy solutions division fell 23 percent in 2023 compared with previous year, according to a Reuters analysis.

Trending News

A View From HETI

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

Trending News