China plays a big role in the global push to shift from fossil fuels to cleaner energy. It's the world's largest carbon emitter but also a global leader in solar, wind, and battery technologies. This combination makes China a critical player in the energy transition. China may not be doing enough to reduce its own greenhouse gas emissions, but it is leading the way in producing low-cost, low-carbon solutions.

Why Materials Matter

One of the biggest challenges in switching to alternative energy is the need for specific materials like lithium, cobalt, and rare earth metals. These are essential for making things like solar panels, wind turbines, and batteries. In her report, "Minerals and Materials Challenges for Our Energy Future(s): Dateline 2024," Michelle Michot Foss emphasizes the critical role of materials in energy transitions:

"Energy transitions require materials transitions; sustainability is multifaceted; and innovation and growth will shape the future of energy and economies."

China controls much of the supply and processing of these materials. For example, it produces most of the world’s rare earth metals and has the largest capacity for making batteries. This gives China a big advantage but also creates risks. Michot Foss points out:

"China’s command over material supply chains presents both opportunities and risks. On one hand, it enables rapid scaling of technologies like wind, solar, and batteries. On the other hand, it exposes the global market to potential vulnerabilities, as geopolitical tensions and trade barriers could disrupt these critical flows."

China’s strategy for dominating alternative energy materials is also closely tied to its national security interests. By securing control over these critical supply chains, China not only hopes to guarantee its own energy independence but also gains significant geopolitical leverage.

“Is China’s leadership strategic or accidental? China’s dominance is a consequence of enormous excess materials supply chain and manufacturing capacity. A flood of exports are undermining materials and “green tech” businesses everywhere. It heightens vulnerabilities and geopolitical tensions. How do we in the US find our own comparative advantage?” Michot Foss notes that advanced materials should be a priority for US responses, especially as attention shifts to nuclear energy possibilities and as carbon capture and hydrogen initiatives play out.

Balancing Energy Growth and Emissions

GabrielCollins, in his report "Reality Is Setting In: Asian Countries to Lead Transitions in 2024 and 2025," offers another perspective. He focuses on how developing nations, especially in Asia, are shaping the energy transition:

"The developing world, including many countries in Asia, increasingly demand that developed nations’ policy advocacy stop treating the economic and environmental needs of the developing world as an afterthought."

Collins highlights China’s dual strategy: investing heavily in renewables while still using coal to meet its growing energy demand. He explains:

"China, which now has installed a terawatt combined of wind and solar capacity while still ramping up coal output and moving to dominate EV and renewables supply chains and manufacturing."

This strategy appeals to other developing nations, which face similar challenges of balancing energy needs with environmental goals while fostering economic growth and expanding industries.

The Numbers: Progress and Challenges

McKinsey’s Global Energy Perspective 2024 provides some useful data. On the bright side, China is installing renewable energy faster than any other country. In 2023, it added over 100 gigawatts of solar capacity, a world record. Wind energy is growing quickly too, and China leads in producing electric vehicle batteries.

But McKinsey also notes the challenges. Coal still generates more than half of China’s electricity. While renewable energy is growing fast, it’s not replacing coal yet—it’s just adding to China’s total energy capacity.

McKinsey sums it up: China is leading in renewable energy deployment, but its reliance on coal highlights the slow pace of deep decarbonization. The country is transitioning, but not fast enough to meet global climate targets.

Is China Leading or Lagging?

So, is China leading the energy transition? The answer is: it depends on how you define “leading.”

If leadership means building more solar and wind farms, dominating the materials supply chain, and being the leading supplier of low-carbon solutions, then yes, China is ahead of everyone else. But if leadership means cutting their own emissions quickly and shifting away from fossil fuels, China still has work to do.

China’s approach is practical. It’s making progress where it can—like scaling up renewables—but it’s also sticking with coal to ensure its economy and energy needs stay stable.

Final Thoughts

China is both a leader and a work in progress when it comes to the energy transition. Its achievements in renewable energy are impressive, but its reliance on coal and the challenges of balancing growth with sustainability show there’s still a long road ahead.

China’s story reminds us that the energy transition isn’t a straight path. It’s a journey full of trade-offs and complexities, and China’s experience reflects the challenges the whole world faces. At the same time, its focus on national security through energy independence and industrial strategy to build low-carbon export businesses signals a strategic move that is reshaping global power dynamics, leaving the United States and other nations to reevaluate their energy policies.

———

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on December 5, 2024.


Houston energy transition folks — here's what to know to start your week. Photo via Getty Images

3 things to know this week: Fervo's fresh funding, recapping 2024, and more

taking notes

Editor's note: Dive headfirst into the new week with three quick things to catch up on in Houston's energy transition.

Year in review: Rounding up 2024's recap

As the year comes to a close, EnergyCapital is looking back at the year's top stories in Houston energy transition. So far, the Year in Review section has covered top guest columns, trending research news, and more. Read each roundup below.

Fresh funding: Fervo Energy collects $255M

The deal brings Fervo's total funding secured this year to around $600 million. Photo courtesy of Fervo

A Houston company that's responding to rising energy demand by harnessing geothermal energy through its technology has again secured millions in funding. The deal brings Fervo's total funding secured this year to around $600 million.

Fervo Energy announced that it has raised $255 million in new funding and capital availability. The $135 million corporate equity round was led by Capricorn’s Technology Impact Fund II with participating investors including Breakthrough Energy Ventures, CalSTRS, Congruent Ventures, CPP Investments, DCVC, Devon Energy, Galvanize Climate Solutions, Liberty Mutual Investments, Mercuria, and Sabanci Climate Ventures.

The funding will go toward supporting Fervo's ongoing and future geothermal projects. Continue reading.

Big deal: Expro secures $10M contract

Expro has secured a $10 million contract to provide a subsea well decommissioning solution, combining subsea safety systems and surface fluid management to support safe re-entry and fluid management for plugged and abandoned wells. Photo courtesy of Expro

Houston energy services provider Expro was awarded a contract valued at over $10 million for the provision of a well decommissioning solution.

The solution will combine subsea safety systems and surface processing design that can enable safe entry to the well and management of well fluids.

“The contract reinforces our reputation as the leading provider of subsea safety systems and surface well test equipment, including within the P&A sector,” Iain Farley, Expro’s regional vice president for Europe and Sub-Saharan Africa, says in a news release. "It demonstrates our commitment to delivering best-in-class equipment, allied with the highest standards of safety and service quality that Expro is renowned for.” Continue reading.

Houston energy transition folks — here's what to know to start your week. Photo via Getty Images

3 things to know this week: Apps open for accelerator, energy innovator bets on Houston, and more

taking notes

Editor's note: Dive headfirst into the new week with three quick things to catch up on in Houston's energy transition.

Apply now: Greentown Labs, Evonik launch accelerator to boost sustainability in personal care products

Greentown Labs and Evonik have launched the Greentown Go Make 2025 accelerator to support startups developing sustainable technologies for the personal care industry. Photo via Evonik.us

Greentown Labs and its corporate partner, Germany-based chemicals company Evonik, are calling for submissions to a new program geared at accelerating more sustainable personal care products.

The Greentown Go Make 2025 accelerator, which is based in both Greentown's Houston and Boston-area locations and open to companies from around the world, as launched applications now through January 23.

"Designed to accelerate startup-corporate partnerships to advance climatetech, this Greentown Go program is focused on increasing sustainability within the personal-care industry through the development, introduction, and commercialization of technologies that reduce products’ manufacturing-related emissions and end-of-life environmental impact," reads a news release from Greentown. Read more.

Big deal: Houston company's $2B carbon-negative fuel project to rise in Southeast Texas

Pathway Energy has announced a major sustainable aviation fuel project in Port Arthur, Texas. Rendering courtesy of Pathway Energy

Houston developer of ultra carbon-negative fuels projects Pathway Energy announced a series of commercial-scale sustainable aviation fuel (SAF) facilities with the first being based in Port Arthur, Texas.

The project, estimated to be valued at $2 billion, will be one of the largest decarbonization projects in the world.

Pathway plans to bring commercial SAF to market with its years of experience in waste and biomass conversion processes and technologies that include biomass gasification, Fischer-Tropsch, biomass power generation, and complex biorefinery and industrial processes. Pathway will be working with companies like Sumitomo SHI FW, who will supply the project with gasification process technology packages and power production. Pathway Energy also announced a strategic partnership with Drax Global, which is a biomass feedstock provider.

"We are happy to debut with the best technology and industrial partners in the industry on a market opportunity with global significance," Steve Roberts, CEO of Pathway Energy, says in a news release. "With the ultra negative carbon intensity achieved through our process, Pathway Energy is poised to lead a global market for ultra negative fuels, driving large scale emission reductions across the aviation sector." Read more.

Listen in: This Houston innovator's innovative corrosion detection tech is vital to the future of energy

Anwar Sadek of Corrolytics joins the Houston Innovators Podcast to discuss his company's growth and move to Houston. Photo courtesy

Houston-based Corrolytics approach is to help revolutionize and digitize microbial corrosion detection — both to improves efficiency and operational cost for industrial companies, but also to move the needle on a cleaner future for the energy industry.

"We are having an energy transition — that is a given. As we are bringing new energy, there will be growth of infrastructure to them. Every single path for the energy transition, corrosion will play a primary role as well," Anwar Sadek, co-founder and CEO of Corrolytics, says on the Houston Innovators Podcast.

The technology Sadek and his team have created is a tool to detect microbial corrosion — a major problem for industrial businesses, especially within the energy sector. Sadek describes the product as being similar to a testing hit a patient would use at home or in a clinic setting to decipher their current ailments. Read more.

Anwar Sadek of Corrolytics joins the Houston Innovators Podcast to discuss his company's growth and move to Houston. Photo courtesy

This Houston innovator's innovative corrosion detection tech is vital to the future of energy

now streaming

Houston-based Corrolytics approach is to help revolutionize and digitize microbial corrosion detection — both to improves efficiency and operational cost for industrial companies, but also to move the needle on a cleaner future for the energy industry.

"We are having an energy transition — that is a given. As we are bringing new energy, there will be growth of infrastructure to them. Every single path for the energy transition, corrosion will play a primary role as well," Anwar Sadek, co-founder and CEO of Corrolytics, says on the Houston Innovators Podcast.

The technology Sadek and his team have created is a tool to detect microbial corrosion — a major problem for industrial businesses, especially within the energy sector. Sadek describes the product as being similar to a testing hit a patient would use at home or in a clinic setting to decipher their current ailments.



Users of the Corrolytics test kit can input their pipeline sample in the field and receive results via Corrolytics software platform.

"This technology, most importantly, is noninvasive. It does not have to be installed into any pipelines or assets that the company currently has," Sadek explains. "To actually use it, you don't have to introduce new techniques or new processes in the current operations. It's a stand-alone, portable device."

Corrolytics hopes to work with new energies from the beginning to used the data they've collected to prevent corrosion in new facilities. However, the company's technology is already making an impact.

"Every year, there is about 1.2 gigaton of carbon footprint a year that is released into the environment that is associated with replacing corroded steel in general industries," Sadek says. "With Corrolytics, (industrial companies) have the ability to extend the life of their current infrastructure."

Despite having success in taking his technology from lab to commercialization, Sadek made the strategic decision to move his company, Corrolytics, from where it was founded in Ohio to Houston.

"Houston is the energy capital of the world. For the technology we are developing, it is the most strategic move for us to be in this ecosystem and in this city where all the energy companies are, where all the investors in the energy space are — and things are moving really fast in Houston in terms of energy transition and developing the current infrastructure," Sadek says.

And as big as a move as it was, it was worth it, Sadek says.

"It's been only a year that we've been here, but we've made the most developments, the most outreach to clients in this one last year."

Sadek says his move to Houston has already paid off, and he cites one of the company's big wins was at the 2024 Houston Innovation Awards, where Corrolytics won two awards.

———

This article originally ran on InnovationMap.

While our grid may be showing its age, this is the perfect time to shift from reacting to problems to getting ahead of them.

Reshaping the Texas grid: The impact of EVs, AI, renewables, and extreme weather

guest column

Did you catch those images of idle generators that CenterPoint had on standby during Hurricane Beryl? With over 2 million people in the Houston area left in the dark, many were wondering, "if the generators are ready, why didn’t they get used?" It seems like power outages are becoming just as common as the severe storms themselves.

But as Ken Medlock, Senior Director of the Baker Institute Center for Energy Studies (CES) explains, it's not a simple fix. The outages during Hurricane Beryl were different from what we saw during Winter Storm Uri. This time, with so many poles and wires down, those generators couldn’t be put to use. It’s a reminder that each storm brings its own set of challenges, and there’s no one-size-fits-all solution when it comes to keeping the lights on. While extreme weather is one of the leading threats to our electric grid, it's certainly not the only one adding strain on our power infrastructure.

The rapid rise of artificial intelligence (AI) and electric vehicles (EVs) is transforming the way we live, work, and move. Beneath the surface of these technological marvels lies a challenge that could define the future of our energy infrastructure: they all depend on our electrical grid. As AI-powered data centers and a growing fleet of EVs demand more power than ever before, our grid—already under pressure from extreme weather events and an increasing reliance on renewable energy—faces a critical test. The question goes beyond whether our grid can keep up, but rather focuses on how we can ensure it evolves to support the innovations of tomorrow without compromising reliability today. The intersection of these emerging technologies with our aging energy infrastructure poses a dilemma that policymakers, industry leaders, and consumers must address.

Julie Cohn, Nonresident Fellow at the Center for Energy Studies at the Baker Institute for Public Policy, presents several key findings and recommendations to address concerns about the reliability of the Texas energy grid in her Energy Insight. She suggests there’s at least six developments unfolding that will affect the reliability of the Texas Interconnected System, operated by the Electric Reliability Council of Texas (ERCOT) and the regional distribution networks operated by regulated utilities.

Let’s dig deeper into some of these issues:

AI

AI requires substantial computational power, particularly in data centers that house servers processing vast amounts of data. These data centers consume large amounts of electricity, putting additional strain on the grid.

According to McKinsey & Company, a single hyperscale data center can consume as much electricity as 80,000 homes combined. In 2022, data centers consumed about 200 terawatt-hours (TWh), close to 4 percent, of the total electricity used in the United States and approximately 460 TWh globally. That’s nearly the consumption of the entire State of Texas, which consumed approximately 475.4 TWh of electricity in the same year. However, this percentage is expected to increase significantly as demand for data processing and storage continues to grow. In 2026, data centers are expected to account for 6 percent, almost 260 TWh, of total electricity demand in the U.S.

EVs

According to the Texas Department of Motor Vehicles, approximately 170,000 EVs have been registered across the state of Texas as of 2023, with Texas receiving $408 million in funding to expand its EV charging network. As Cohn suggests, a central question remains: Where will these emerging economic drivers for Texas, such as EVs and AI, obtain their electric power?

EVs draw power from the grid every time they’re plugged in to charge. This may come as a shock to some, but “the thing that’s recharging EV batteries in ERCOT right now, is natural gas,” says Medlock. And as McKinsey & Company explains, the impact of switching to EVs on reducing greenhouse gas (GHG) emissions will largely depend on how much GHG is produced by the electricity used to charge them. This adds a layer of complexity as regulators look to decarbonize the power sector.

Depending on the charger, a single EV fast charger can pull anywhere from 50 kW to 350 kW of electricity per hour. Now, factor in the constant energy drain from data centers, our growing population using power for homes and businesses, and then account for the sudden impact of severe environmental events—which have increased in frequency and intensity—and it’s clear: Houston… we have a problem.

The Weather Wildcard

Texas is gearing up for its 2025 legislative session on January 14. The state's electricity grid once again stands at the forefront of political discussions. The question is not just whether our power will stay on during the next winter storm or scorching summer heatwave, but whether our approach to grid management is sustainable in the face of mounting challenges. The events of recent years, from Winter Storm Uri to unprecedented heatwaves, have exposed significant vulnerabilities in the Texas electricity grid, and while legislative measures have been taken, they have been largely patchwork solutions.

Winter Storm Uri in 2021 was a wake-up call, but it wasn’t the first or last extreme weather event to test the Texas grid. With deep freezes, scorching summers, and unpredictable storms becoming the norm rather than the exception, it is clear that the grid’s current state is not capable of withstanding these extremes. The measures passed in 2021 and 2023 were steps in the right direction, but they were reactive, not proactive. They focused on strengthening the grid against cold weather, yet extreme heat, a more consistent challenge in Texas, remains a less-addressed threat. The upcoming legislative session must prioritize comprehensive climate resilience strategies that go beyond cold weather prep.

“The planners for the Texas grid have important questions to address regarding anticipated weather extremes: Will there be enough energy? Will power be available when and where it is needed? Is the state prepared for extreme weather events? Are regional distribution utilities prepared for extreme weather events? Texas is not alone in facing these challenges as other states have likewise experienced extremely hot and dry summers, wildfires, polar vortexes, and other weather conditions that have tested their regional power systems,” writes Cohn.

Renewable Energy and Transmission

Texas leads the nation in wind and solar capacity (Map: Energy, Environment, and Policy in the US), however the complexity lies in getting that energy from where it’s produced to where it’s needed. Transmission lines are feeling the pressure, and the grid is struggling to keep pace with the rapid expansion of renewables. In 2005, the Competitive Renewable Energy Zones (CREZ) initiative showed that state intervention could significantly accelerate grid expansion. With renewables continuing to grow, the big question now is whether the state will step up again, or risk allowing progress to stall due to the inadequacy of the infrastructure in place. The legislature has a choice to make: take the lead in this energy transition or face the consequences of not keeping up with the pace of change.

Conclusion

The electrical grid continues to face serious challenges, especially as demand is expected to rise. There is hope, however, as regulators are fully aware of the strain. While our grid may be showing its age, this is the perfect time to shift from reacting to problems to getting ahead of them.

As Cohn puts it, “In the end, successful resolution of the various issues will carry significant benefits for existing Texas industrial, commercial, and residential consumers and have implications for the longer-term economic attractiveness of Texas. Suffice it to say, eyes will be, and should be, on the Texas legislature in the coming session.”

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on September 11, 2024.

Houston energy transition folks — here's what to know to start your week. Photo via Getty Images

What to know this week: Houston founder sounds off, Aramco backs CCUS tech, and more

taking notes

Editor's note: Dive headfirst into the new week with three quick things to catch up on in Houston's energy transition.

Events not to miss

Put these Houston-area energy-related events on your calendar.

Big deal: Aramco bets on carbon capture technology for gas turbines

The technology demonstration will be used to deploy Carbon Clean’s novel CycloneCC technology to capture CO2 from natural gas turbine exhaust streams. Photo via Carbon Clean

Integrated energy and chemicals company Aramco has signed a collaboration agreement with Carbon Clean and SAMSUNG E&A in an effort to showcase new carbon capture technology.

The technology demonstration will be used to deploy Carbon Clean’s novel CycloneCC technology to capture CO2 from natural gas turbine exhaust streams containing approximately 4 percent CO2, according to Aramco.

Carbon Clean, which U.S. headquarters are located in Houston at the Ion, boasts technology that has captured nearly two million tons of carbon dioxide at almost 50 sites around the world. Aramco’s U.S. headquarters is also in Houston. Continue reading.

Now streaming: Houston founder on driving the future of geothermal energy, storage

In a recent Energy Tech Startups Podcast episode, Cindy Taff discussed the evolution of Sage GeoSystems, the challenges of scaling hard tech solutions, and the opportunities presented by geothermal and pumped hydro energy storage. Photo courtesy of Sage

Cindy Taff, co-founder and CEO of Sage GeoSystems, has emerged as a visionary leader in the energy transition, recently named to Time magazine’s 100 Most Influential Climate Leaders in Business for 2024. Under her leadership, Sage is not only advancing geothermal energy innovation but also redefining how energy storage can support a renewable-powered grid.

In a recent Energy Tech Startups Podcast episode, Taff discussed the evolution of Sage GeoSystems, the challenges of scaling hard tech solutions, and the opportunities presented by geothermal and pumped hydro energy storage. Her insights reflect the unique perspective of a founder bridging oil and gas expertise with renewable energy innovation. Continue reading and listen to the podcast episode.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Geothermal exec on Houston expansion, commercialization and more

Q&A

Challenges in the energy transition often center around two questions: Where will organizations find the resources? And how will projects be financed?

XGS Energy's next-gen closed-loop geothermal well architecture addresses both issues head-on. The California-based company saw massive growth in the Houston market last year and recently completed a 100-meter field demonstration in central Texas, marking a major milestone for its technology's commercialization and potential for scale.

In an interview with EnergyCapital, Axel-Pierre Bois, XGS's Chief Technology Officer, shares what drew him to the geothermal space, why XGS is expanding in Houston and what the company's plans are for the year ahead.

How does XGS Energy's technology address the biggest challenges in geothermal energy?

XGS Energy is developing a geothermal system that decouples geothermal energy from its traditional dependence on water and geology to deliver affordable, clean energy anywhere there is hot rock.

Historically, geothermal resources have been hard to locate, as conventional systems require the overlap of hot rock, porous and permeable geology, and abundant water to produce energy, limiting their potential to a few select hot spots worldwide. Instead of relying on an underground fracture network that drives the geology and water requirements, the base component of XGS’s system is a single well, in which fluid is pumped to a hot rock resource and then returned to the surface through a tube-in-shell design, creating a sealed, closed loop. This allows XGS to produce geothermal energy anywhere where there is hot rock, unlocking terawatt-scale potential in the U.S. alone.

Geothermal systems have also struggled to secure project financing, as many systems have historically faced high levels of unplanned cost risk due to factors including water loss and production uncertainty. XGS’s sealed, closed-loop system ensures that it can provide reliable, predictable electricity throughout its lifespan. XGS also boosts the cost-competitiveness of its system through our major innovation, a proprietary thermally conductive materials system that is installed downhole around each well, increasing the heat transferred to the closed-loop system by 30-50%.

What has drawn you to a career in the geothermal energy space?

I have been in the subsurface industry for over 30 years, developing technical solutions for companies in the fields of geosciences, underground storage, upstream oil and gas, and geothermal heat harvesting to help improve their overall economic, ethical and environmental footprints. In 2009, I founded Curistec, a technology company providing research, engineering and technical services for geomechanics, wellbore integrity, well abandonment, cement design and cement and rock testing. A few years back, Curistec assisted with the Iceland Deep Drilling Project, helping to develop cement formulations for superhot geothermal well applications to enable drilling in high-temperature environments. As I looked toward the future, it became clear that next-generation geothermal technologies would transform the geothermal energy industry and open new markets worldwide. Curistec had been working closely with the XGS Energy team as technology partners for several years, so joining the team directly to help shape the technology development was an exciting opportunity to help develop and deploy a new system to unlock the full terawatt-scale potential of geothermal energy.

Tell us about the 100-meter field demonstration in central Texas completed in 2024 — what all did you and your team learn from the test?

Our 100-meter field demonstration in central Texas marked a significant step in our progress toward deploying geothermal energy in a commercial setting. With this field operation, we successfully demonstrated our ability to mix, pump and place our thermally conductive materials system at a commercial scale, using off-shelf tools and technologies. This was a significant milestone, taking us from theoretical models and laboratory tests to field-scale operations, proving that our novel geothermal system is operationally viable in real-world well conditions.

The completion of the Texas field demonstration advanced XGS into the new wave of geothermal innovators that are putting real steel in the ground. In 2024, we kicked off construction at our commercial-scale demonstration in California and are excited to share updates in the year ahead.

Last year, XGS Energy leased over 10,000 square feet of office space in Memorial City. How has Houston's business community and opportunities benefitted the company?

Houston, the epicenter of the oil and gas industry, has become a hub of energy innovation, offering attractive incentives for growing companies like XGS. The region’s workforce, which is home to some of the best subsurface engineers and operational talent in the energy sector, was a key factor for XGS when we were planning our operational roadmap. This expertise, paired with proximity to our partners in the field services industries, like cementing and drilling, is both apracticaland tactical advantage for XGS.

We’ve built a strong technical and operational team here at XGS, with experience from the oil and gas industry, utilities and power project developers. XGS is planning for continued growth in the Houston area, leveraging the region’s leading engineering and operational workforce and its intensifying interest in supporting the energy transition.

What are XGS Energy's goals for 2025?

In 2024, the XGS Energy team made significant progress toward our goal of providing clean, round-the-clock energy with our solid-state geothermal system. In 2025, XGS Energy will be focused on deploying its geothermal system at a commercial scale, starting with the completion of our full-scale prototype in California. XGS will also continue accelerating our commercial traction, expanding our already robust and highly differentiated geothermal resource evaluation toolkit, advancing our global project pipeline, and growing our team to strengthen our operational capability and capacity.

Environmentalists say Trump's energy order would subvert Endangered Species Act

In The News

Environmental groups concerned about loss of protections for vanishing animals see one of President Donald Trump’s early executive orders as a method of subverting the Endangered Species Act in the name of fossil fuel extraction and corporate interests.

Trump declared an energy emergency via executive order earlier this week amid a promise to “drill, baby, drill.” One section of the order states that the long-standing Endangered Species Act can’t be allowed to serve as an obstacle to energy development.

That language is a pathway to rolling back protections for everything from tiny birds like the golden-cheeked warbler to enormous marine mammals like the North Atlantic right whale, conservation groups said Wednesday. Some vowed to fight the order in court.

The Endangered Species Act has been a hurdle for the development of fossil fuels in the U.S. for decades, and weakening the act would accelerate the decline and potential extinction of numerous endangered species, including whales and sea turtles, said Gib Brogan, a campaign director with conservation group Oceana.

“This executive order, in a lot of ways, is a gift to the oil and gas industry and is being sold as a way to respond to the emergency declaration by President Trump,” Brogan said. “There is no emergency. The species continue to suffer. And this executive order will only accelerate the decline of endangered species in the United States.”

The Endangered Species Act has existed for more than 50 years and is widely credited by scientists and environmentalists with helping save iconic American species such as the bald eagle from extinction. A key section of the act directs federal agencies to work to conserve endangered and threatened species and use their authorities to protect them.

Trump's order declaring a national energy emergency took direct aim at the authority provided by the Endangered Species Act. It orders federal departments to treat energy production as an emergency, which could help expedite approval of energy projects that might otherwise be held up.

The order also convenes a committee to “identify obstacles to domestic energy infrastructure specifically deriving from implementation of the ESA or the Marine Mammal Protection Act,” another landmark conservation law. It states the committee could consider regulatory reforms, including “species listings,” as part of its work.

The Trump administration did not respond to a request for comment on the executive order. The order defines energy mostly as fossil fuels such as crude oil and and coal and does not include renewable energies such as wind power. It also states that energy production is an emergency because “an affordable and reliable domestic supply of energy is a fundamental requirement for the national and economic security of any nation.”

While environmentalists herald the Endangered Species Act as a landmark law, pro-development and free market interests have long criticized it for holding up the building of energy, infrastructure, housing and other projects. Some, including the influential Heartland Institute, applauded Trump's declaration of an energy emergency this week.

Conservatives have also decried the Endangered Species Act as inefficient. It took the U.S. Fish and Wildlife Service years to follow the process of potentially delisting the golden-cheeked warbler, a small songbird that breeds only in the forests of central Texas, said Connor Mighell, an attorney with Texas Public Policy Foundation, a free market research institute.

Trump's executive order could help stop the Endangered Species Act from resulting in drawn-out permitting processes and lengthy litigation, said Brent Bennett, energy policy director for Texas Public Policy Foundation.

“We're hoping that can improve some of the permitting processes and remove some of these barriers,” Bennett said.

But the act is critical to maintaining species threatened with extinction, environmentalists said. They cite whales such as the North Atlantic right whale, which numbers less than 400 and is vulnerable to collisions with ships and entanglement in fishing gear, as an example of an animal that must be protected under the act. The Rice's whale, which numbers even fewer and is vulnerable to disruption from oil drilling in the Gulf of Mexico, is another prime example, environmentalists said.

The nation's symbol, the bald eagle, is a perfect example of the importance and effectiveness of the Endangered Species Act, said Andrew Bowman, president of the conservation group Defenders of Wildlife.

“President Trump’s election to office did not come with a mandate to deny Americans a clean and healthy environment or destroy decades of conservation successes that have ensured the survival and recovery of some of America’s most iconic species, including the bald eagle, which was newly named our country’s national bird and is only with us today thanks to the Endangered Species Act," Bowman said.

Texas ranks as No. 2 manufacturing hub in U.S., behind only California

by the numbers

Texas ranks among the country’s biggest hubs for manufacturing, according to a new study.

The study, conducted by Chinese manufacturing components supplier YIJIN Hardware, puts Texas at No. 2 among the states when it comes to manufacturing-hub status. California holds the top spot.

YIJIN crunched data from the U.S. Census Bureau, International Trade Administration, and National Association of Manufacturers to analyze manufacturing activity in each state. The study weighed factors such as number of manufacturing establishments, number of manufacturing employees, total value of manufacturing output, total manufacturing exports and manufacturing’s share of a state’s gross domestic product.

Here are Texas’ figures for those categories:

  • 19,526 manufacturing establishments
  • 847,470 manufacturing employees
  • Total manufacturing output of $292.6 billion
  • Total manufacturing exports of $291.9 billion
  • 11.3 percent share of state GDP

According to Texas Economic Development & Tourism, the state’s largest manufacturing sectors include automotive, tech, petroleum, chemicals, and food and beverage.

“The Lone Star State is truly a manufacturing powerhouse,” the state agency says.

In an October speech, Texas Gov. Greg Abbott praised the state’s robust manufacturing industry.

“We are proud that Texas is home to a booming manufacturing sector,” he said. “Thanks to our strong manufacturing sector, ‘Made in Texas’ has never been a bigger brand.”

Houston is a cornerstone of Texas’ manufacturing industry. The region produces more than $75 billion worth of goods each year, according to the Greater Houston Partnership. That makes Houston the second-ranked U.S. metro area for manufacturing GDP. The more than 7,000 manufacturing establishments in the area employ over 223,000 people.

“As one of the most important industrial bases in the world, Houston has access to many global markets thanks to its central location within the U.S. and the Americas,” the partnership says.