top teams

CERAWeek announces winners of annual clean tech pitch competition

The teams at this year's Energy Venture Day and Pitch Competition have collectively raised $435 million in funding. Photo courtesy of CERAWeek

Teams from around the world and right here in Houston took home prizes at the fourth annual Energy Venture Day and Pitch Competition at CERAWeek on March 12.

The fast-paced event, put on by Rice Alliance, Houston Energy Transition Initiative and TEX-E, invited 36 industry startups and five Texas-based student teams focused on driving efficiency and advancements toward the energy transition to present at 3.5-minute pitch before investors and industry partners during CERAWeek's Agora program. The competition is a qualifying event for the Startup World Cup, powered by Pegasus Venture, where teams compete for a $1 million investment prize.

The teams at this year's Energy Venture Day have collectively raised $435 million in funding.

Rice University student teams took home two of the three top prizes in the competition.

HEXASpec won the student track, known at TEX-E, taking home $25,000. The team's pitch focused on enhancing semiconductor chips’ thermal conductivity to boost computing power. Pattern Materials, another Rice-led team, claimed third place and won $10,000 for its proprietary LIG and LIGF technology that produces graphene patterns.

A team from the University of Texas McCombs School of Business, Nanoborne, took home second place and $15,000 for its engineering company focused on research and development in applied nanotechnology.

The companies that pitched in the three industry tracts competed for non-monetary awards. Here's who won:

Track A: Hydrogen, Fuel Cells, Buildings, Water, & Other Energy Solutions

Track B: Advanced Manufacturing, Materials, Fossil Energy, & Carbon Management

Track C: Industrial Efficiency, Decarbonization, Electricity, & the Grid

Arculus Solutions, which retrofits natural gas pipelines for safe hydrogen transportation, was named the overall winner and will move on to the Startup World Cup competition. California-based Membravo was also given a "golden ticket" to participate in the next NOV Supernova Accelerator cohort.

Teams at this year's Energy Venture Day represented five countries and 15 states. Click here to see the full list of companies and investor groups that participated.

Trending News

A View From HETI

A team of Rice researchers, including Caroline Ajo-Franklin and Biki Bapi Kundu, has uncovered how certain bacteria breathe by generating electricity. Photo by Jeff Fitlow/Rice University.

New research from Rice University that merges biology with electrochemistry has uncovered new findings on how some bacteria generate electricity.

Led by Caroline Ajo-Franklin, a Rice professor of biosciences and the director of the Rice Synthetic Biology Institute, the team published its findings in the journal Cell in April. The report showed how some bacteria use compounds called naphthoquinones, rather than oxygen, to transfer electrons to external surfaces in a process known as extracellular respiration. In other words, the bacteria are exhale electricity as they breathe.

This process has been observed by scientists for years, but the Rice team's deeper understanding of its mechanism is a major breakthrough, with implications for the clean energy and industrial biotechnology sectors, according to the university.

“Our research not only solves a long-standing scientific mystery, but it also points to a new and potentially widespread survival strategy in nature,” Ajo-Franklin, said in a news release.

The Rice team worked with the University of California, San Diego's Palsson lab to simulate bacterial growth using advanced computer modeling. The simulations modeled oxygen-deprived environments that were rich in conductive surfaces, and found that bacteria could sustain themselves without oxygen. Next, they confirmed that the bacteria continued to grow and generate electricity when placed on conductive materials.

The team reports that the findings "lay the groundwork for future technologies that harness the unique capabilities" of these bacteria with "far-reaching practical implications." The team says the findings could lead to significant improvements in wastewater treatment and biomanufacturing. They could also allow for better bioelectronic sensors in oxygen-deprived environments, including deep-sea vents, the human gut and in deep space.

“Our work lays the foundation for harnessing carbon dioxide through renewable electricity, where bacteria function similarly to plants with sunlight in photosynthesis,” Ajo-Franklin added in the release. “It opens the door to building smarter, more sustainable technologies with biology at the core.”

Trending News