guest column

Houston energy expert shares key takeaways from CERAWeek 2025

Houston energy leader Barbara Burger shared her key takeaways from CERAWeek 2025 with InnovationMap. Photo courtesy of CERAWeek

What a difference a year makes.

I have been coming to CERAWeek for as long as I can remember and the Agora track within CERAWeek since it originated. Although freshness likely distorts my thinking, I cannot remember a CERAWeek that seemed so different from the previous year's than this one.

This certainly isn’t a comprehensive summary of the conference, but some of my key take forwards from last week's events.

It’s all about power.

It seemed like everyone associated with the power value chain showed up. Developers, turbine manufacturers, utilities, oil and gas, renewables, geothermal, nuclear, storage, hyperscalers, and lots of innovative companies that aim to squeeze more out of the grid we already have. Most of the companies embraced the “all of the above” sentiment and despite moderators (and some key notes) attempt to force technology picks, most didn’t take the bait.

Practical is in.

Real issues – choke points in supply chains and the workforce, permit timing, cost increases in new generation – were openly discussed both on the stage and in the countless meetings and meet ups in partner rooms and in open spaces throughout the Hilton Americas and the GR Brown.

AI was everywhere.

While there was an understanding that not all the power load growth is coming from AI and Data Centers, that segment was getting all the attention. AI went beyond the retail and human enablement to AI for Optimization and AI for Innovation. The symbiosis of Tech and Energy was evident – power is a constraint, and AI is a game changer. S&P (CERAWeek’s organizer) did a great job of weaving this theme across the conference in both the Executive and Agora sessions.

More gas… and less hydrogen.

Whether it was LNG or gas to power or methane emission management, the US’s dominance in gas was front and center. Hydrogen was largely absent from the Executive talks and where it was topical in the Agora sessions, the need for better economics was made clear.

Consistency and balance are needed for this sector.

I am unsure whether it is a “stay calm and carry on” approach, as one leader fashioned, or rather a “carry on” message and imperative. Phrases like “one extreme to another” were heard on stage and in the hallways. The oil and gas CEOs talked more openly about their base business than they had in the last four years but they also talked about their decarbonization activities as well as commercialization of new technologies and value chains.

The macro-economic picture cast long shadows.

While few talks onstage addressed tariffs, consumer sentiment, inflation and unemployment (including those from government officials), the talks in the halls and private meetings certainly did. And while some argued that “the end justifies the means,” it wasn’t an argument that most seemed to buy into.

There is a lot of tripping up on labels.

Politics makes our sector more polarizing than it should or needs to be. Climatetech, Sustainability, Cleantech – some were labels with broad objectives, and some were meant to be binary or exclusionary. "Energy Transition" for some meant a binary replacement of fossil fuels with renewables, and for others, it meant an evolution of a system in multiple dimensions. In any event, a lot of energy is being spent on the labels and the narratives. I don’t have an easy answer for this other than to fall back to longer discussions and less use of labels that have lots of meanings and can quickly move a constructive discussion onto the third rail.

Collaboration is key and vital in this uncertain world.

The attendance of approximately 10,000 spanned the breadth of energy, those who make, move, and use it from around the globe—in other words, everyone—with a strong tone of inclusion. CERAWeek, after all, is all about convening and collaboration, and this played out in the programming and the networking. The messages about practicality, consistency, balance and “all of the above” and the storm clouds of the extremes seemed to put everyone in a similar boat: Am I being too hopeful that this will lead to more and more collaboration within the sector to advance the multiple aims of affordability, reliability, security, resiliency and sustainability?

The next-generation workforce is a strategic imperative.

The NextGen cohort in Agora was launched with 100+ graduate students from all over coming to see the energy sector close up. Kudos to S&P for making this investment and to all the conference attendees who spent time talking to the students about their research, their interests, and, importantly, sharing their career stories. Relationships were born at CERAWeek.

Houston showed well for the conference and Mother Nature played nice. The days were sunny and dry, and the evening temperatures fit the outdoor events well. The schedule and pace of CERAWeek is exhausting, and most people were worn out by Thursday.

CERAWeek 2025 is in the books; the connections made, and messages heard set the tone for the year ahead.

Until CERAWeek 2026.

------

Barbara J. Burger is a startup adviser and mentor. She is the independent Director of Bloom Energy and is an advisor to numerous organizations, including Lazard Inc., Syzygy Plasmonics, Energy Impact Partners and others. She previously led corporate innovation for two decades at Chevron and served on the board of directors for Greentown Labs.

Trending News

A View From HETI

No critical minerals, no modern economy. Getty images

If you’re reading this on a phone, driving an EV, flying in a plane, or relying on the power grid to keep your lights on, you’re benefiting from critical minerals. These are the building blocks of modern life. Things like copper, lithium, nickel, rare earth elements, and titanium, they’re found in everything from smartphones to solar panels to F-35 fighter jets.

In short: no critical minerals, no modern economy.

These minerals aren’t just useful, they’re essential. And in the U.S., we don’t produce enough of them. Worse, we’re heavily dependent on countries that don’t always have our best interests at heart. That’s a serious vulnerability, and we’ve done far too little to fix it.

Where We Use Them and Why We’re Behind

Let’s start with where these minerals show up in daily American life:

  • Electric vehicles need lithium, cobalt, and nickel for batteries.
  • Wind turbines and solar panels rely on rare earths and specialty metals.
  • Defense systems require titanium, beryllium, and rare earths.
  • Basic infrastructure like power lines and buildings depend on copper and aluminum.

You’d think that something so central to the economy, and to national security, would be treated as a top priority. But we’ve let production and processing capabilities fall behind at home, and now we’re playing catch-up.

The Reality Check: We’re Not in Control

Right now, the U.S. is deeply reliant on foreign sources for critical minerals, especially China. And it’s not just about mining. China dominates processing and refining too, which means they control critical links in the supply chain.

Gabriel Collins and Michelle Michot Foss from the Baker Institute lay all this out in a recent report that every policymaker should read. Their argument is blunt: if we don’t get a handle on this, we’re in trouble, both economically and militarily.

China has already imposed export controls on key rare earth elements like dysprosium and terbium which are critical for magnets, batteries, and defense technologies, in direct response to new U.S. tariffs. This kind of tit-for-tat escalation exposes just how much leverage we’ve handed over. If this continues, American manufacturers could face serious material shortages, higher costs, and stalled projects.

We’ve seen this movie before, in the pandemic, when supply chains broke and countries scrambled for basics like PPE and semiconductors. We should’ve learned our lesson.

We Do Have a Stockpile, But We Need a Strategy

Unlike during the Cold War, the U.S. no longer maintains comprehensive strategic reserves across the board, but we do have stockpiles managed by the Defense Logistics Agency. The real issue isn’t absence, it’s strategy: what to stockpile, how much, and under what assumptions.

Collins and Michot Foss argue for a more robust and better-targeted approach. That could mean aiming for 12 to 18 months worth of demand for both civilian and defense applications. Achieving that will require:

  • Smarter government purchasing and long-term contracts
  • Strategic deals with allies (e.g., swapping titanium for artillery shells with Ukraine)
  • Financing mechanisms to help companies hold critical inventory for emergency use

It’s not cheap, but it’s cheaper than scrambling mid-crisis when supplies are suddenly cut off.

The Case for Advanced Materials: Substitutes That Work Today

One powerful but often overlooked solution is advanced materials, which can reduce our dependence on vulnerable mineral supply chains altogether.

Take carbon nanotube (CNT) fibers, a cutting-edge material invented at Rice University. CNTs are lighter, stronger, and more conductive than copper. And unlike some future tech, this isn’t hypothetical: we could substitute CNTs for copper wire harnesses in electrical systems today.

As Michot Foss explained on the Energy Forum podcast:

“You can substitute copper and steel and aluminum with carbon nanotube fibers and help offset some of those trade-offs and get performance enhancements as well… If you take carbon nanotube fibers and you put those into a wire harness… you're going to be reducing the weight of that wire harness versus a metal wire harness like we already use. And you're going to be getting the same benefit in terms of electrical conductivity, but more strength to allow the vehicle, the application, the aircraft, to perform better.”

By accelerating R&D and deployment of CNTs and similar substitutes, we can reduce pressure on strained mineral supply chains, lower emissions, and open the door to more secure and sustainable manufacturing.

We Have Tools. We Need to Use Them.

The report offers a long list of solutions. Some are familiar, like tax incentives, public-private partnerships, and fast-tracked permits. Others draw on historical precedent, like “preclusive purchasing,” a WWII tactic where the U.S. bought up materials just so enemies couldn’t.

We also need to get creative:

  • Repurpose existing industrial sites into mineral hubs
  • Speed up R&D for substitutes and recycling
  • Buy out risky foreign-owned assets in friendlier countries

Permitting remains one of the biggest hurdles. In the U.S., it can take 7 to 10 years to approve a new critical minerals project, a timeline that doesn’t match the urgency of our strategic needs. As Collins said on the Energy Forum podcast:

“Time kills deals... That’s why it’s more attractive generally to do these projects elsewhere.”

That’s the reality we’re up against. Long approval windows discourage investment and drive developers to friendlier jurisdictions abroad. One encouraging step is the use of the Defense Production Act to fast-track permitting under national security grounds. That kind of shift, treating permitting as a strategic imperative, must become the norm, not the exception.

It’s Time to Redefine Sustainability

Sustainability has traditionally focused on cutting carbon emissions. That’s still crucial, but we need a broader definition. Today, energy and materials security are just as important.

Countries are now weighing cost and reliability alongside emissions goals. We're also seeing renewed attention to recycling, biodiversity, and supply chain resilience.

Net-zero by 2050 is still a target. But reality is forcing a more nuanced discussion:

  • What level of warming is politically and economically sustainable?
  • What tradeoffs are we willing to make to ensure energy access and affordability?

The bottom line: we can’t build a clean energy future without secure access to materials. Recycling helps, but it’s not enough. We'll need new mines, new tech, and a more flexible definition of sustainability.

My Take: We’re Running Out of Time

This isn’t just a policy debate. It’s a test of whether we’ve learned anything from the past few years of disruption. We’re not facing an open war, but the risks are real and growing.

We need to treat critical minerals like what they are: a strategic necessity. That means rebuilding stockpiles, reshoring processing, tightening alliances, and accelerating permitting across the board.

It won’t be easy. But if we wait until a real crisis hits, it’ll be too late.

———

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn on April 11, 2025.


Trending News