UH researchers have developed a thin film that could allow AI chips to run cooler and faster. Photo courtesy University of Houston.

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

---

This article originally appeared on our sister site, InnovationMap.

ExxonMobil is on Fortune's first-ever AIQ ranking. Getty Images

2 Houston energy giants appear on Fortune’s inaugural AI ranking

AI Leaders

Two Houston-area energy leaders appear on Fortune’s inaugural list of the top adopters of AI among Fortune 500 companies.

They are:

  • No. 7 energy company ExxonMobil, based in Spring
  • No. 47 energy company Chevron, based in Houston

They are joined by Spring-based tech company Hewlett Packard Enterprise, No. `19.

All three companies have taken a big dive into the AI pool.

In 2024, ExxonMobil’s executive chairman and CEO, Darren Woods, explained that AI would play a key role in achieving a $15 billion reduction in operating costs by 2027.

“There is a concerted effort to make sure that we're really working hard to apply that new technology to the opportunity set within the company to drive effectiveness and efficiency,” Woods told Wall Street analysts.

At Chevron, AI tools are being used to quickly analyze data and extract insights from it, according to tech news website VentureBeat. Also, Chevron employs advanced AI systems known as large language models (LLMs) to create engineering standards, specifications and safety alerts. AI is even being put to work in Chevron’s exploration initiatives.

Bill Braun, Chevron’s chief information officer, said at a VentureBeat-sponsored event in 2024 that AI-savvy data scientists, or “digital scholars,” are always embedded within workplace teams “to act as a catalyst for working differently.”

The Fortune AIQ 50 ranking is based on ServiceNow’s Enterprise AI Maturity Index, an annual measurement of how prepared organizations are to adopt and scale AI. To evaluate how Fortune 500 companies are rolling out AI and how much they value AI investments, Fortune teamed up with Enterprise Technology Research. The results went into computing an AIQ score for each company.

At the top of the ranking is Alphabet (owner of Google and YouTube), followed by Visa, JPMorgan Chase, Nvidia and Mastercard. Aside from ExxonMobil, Hewlett Packard Enterprise, and Chevron, two other Texas companies made the list: Arlington-based homebuilder D.R. Horton (No. 29) and Austin-based software company Oracle (No. 37).

“The Fortune AIQ 50 demonstrates how companies across industry sectors are beginning to find real value from the deployment of AI technology,” Jeremy Kahn, Fortune’s AI editor, said in a news release. “Clearly, some sectors, such as tech and finance, are pulling ahead of others, but even in so-called 'old economy' industries like mining and transport, there are a few companies that are pulling away from their peers in the successful use of AI.


---

This article originally appeared on InnovationMap.com.

Weatherford International has partnered with Abu Dhabi-based AIQ to scale processes and boost efficiency with the use of AI. Photo via Getty Images

Weatherford partners with Abu Dhabi-based AI company to boost efficiency

eyes on ai

Houston-headquartered oilfield service company Weatherford International announced a strategic Memorandum of Understanding (MOU) with AIQ, an Abu Dhabi-based artificial intelligence company, to develop innovative solutions for the energy sector.

"We are excited to partner with AIQ to bring innovative, AI-driven solutions to the oil and gas industry,” Girish Saligram, president and CEO of Weatherford, said in a news release. “This strategic partnership allows us to deliver cutting-edge technologies that empower our customers to maximize their operational efficiency, enhance automation, and reduce costs. By combining our strengths, we are leading the way in helping operators modernize their workflows and achieve greater success in today's rapidly evolving energy landscape.”

The collaboration aims to use Weatherford's software and hardware solutions with AIQ's AI-driven systems. Weatherford and AIQ hope this union will significantly enhance operational efficiency across global oil and gas facilities, help operators to optimize their production workflows and reduce downtime.

The companies have developed the new Modern Edge Integration, which will combine AIQ's AI technology with Weatherford's Modern Edge program. It will enable operators to scale their work processes.

In addition, Weatherford's Universal Normalizer will work with AIQ's capabilities to combine operational and financial analysis. Customers will also now be able to procure software needs via a comprehensive industrial SaaS platform with the WFRD Software Launchpad, which can eliminate the issues associated with managing multiple systems and vendors, and provide a single point of access for all Weatherford and partner-built applications.

"This partnership marks another step in AIQ's mission to build partnerships that accelerate the deployment of impactful AI systems across the energy value chain,” Magzhan Kenesbai, Acting Managing Director of AIQ, said in a news release. “By integrating our advanced AI-driven tools with Weatherford's energy-specific technology, we are driving greater efficiencies to the industry through the development of scalable, automated applications. Together, we are set to empower operators to optimize their workflows, reduce downtime, and achieve unparalleled operational excellence.”

Stephen Ojji is rethinking workplace safety. Courtesy photo

Podcast: How AI-powered detection can prevent workplace accidents before they happen

now streaming

Workplace safety has always been reactive. Incidents happen, reports are filed, lessons are learned — sometimes too late. But what if safety wasn’t about reacting to accidents, but preventing them altogether?

In this episode of the Energy Tech Startups Podcast, Stephen Ojji, founder and CEO of VisionTech, challenges how high-hazard industries approach safety. His vision? AI-driven incident detection that doesn’t just monitor the workplace —i t actively prevents injuries, ensures compliance, and builds a stronger safety culture.

From Oil and Gas Safety to AI Innovation

Stephen’s journey into energy tech isn’t what you’d expect. Starting as a safety engineer in Nigeria’s oil and gas sector, his early career was focused on ensuring compliance, training teams, and reducing workplace risks. But he quickly realized a flaw in the system — many incidents weren’t being reported at all.

"Workers don’t always report hazards, and not because they don’t care," he explains. "Sometimes it’s fear of consequences. Sometimes it’s just human nature — we’re focused on getting the job done. But ignoring small risks leads to big accidents."

That’s where VisionTech’s AI-powered safety monitoring system comes in. Instead of relying on human reporting, VisionTech integrates with existing workplace cameras, using computer vision technology and AI to detect:

  • Spills, fire hazards, and safety violations in real-time
  • Workers at risk of injury due to incorrect lifting techniques or missing PPE
  • Trends in safety culture, helping companies address recurring risks

"Think of it like having an extra set of eyes that never blinks," Stephen says. "Not to police workers, but to protect them."

AI and Safety: Moving Beyond Compliance to Prevention

Unlike traditional workplace monitoring, VisionTech’s AI safety system doesn’t track individuals — it tracks behaviors. The system uses ghosting technology, ensuring that workers’ identities remain anonymous while hazards are flagged instantly.

This shifts the focus from penalizing mistakes to empowering safer work environments.

"Companies say they care about safety, but what does that really mean?" Stephen challenges. "If safety is the priority, why not use every tool available to protect workers before an accident happens?"

And here’s the kicker: VisionTech doesn’t just detect risks. It helps companies act on them.

Instead of logging safety incidents in spreadsheets that go unread, the system transforms safety data into actionable insights — identifying patterns, trends, and areas for improvement that help companies make real, lasting changes.

Why Now? The Urgency for Smarter Safety Solutions

With OSHA regulations tightening and ESG commitments pushing for stronger worker protections, industrial companies are under growing pressure to do more than just meet compliance standards.

At the same time, AI and machine learning have advanced rapidly, making AI-powered safety monitoring more affordable, scalable, and accurate than ever before.

"If we had tried to build this 10 years ago, it wouldn’t have worked," Stephen admits. "The technology wasn’t ready. The market wasn’t ready. But today? It’s the right time, and the right tool for a problem that’s been ignored for too long."

What’s Next for VisionTech?

Currently in the MVP stage, VisionTech is preparing for pilot programs with oil and gas companies to prove its impact in real-world environments. The plan? Scale beyond oil and gas into manufacturing, construction, and any industry where safety matters.

But for Stephen, this isn’t just about launching another safety product — it’s about changing how companies think about protecting their workers.

"Safety isn’t just a compliance box to check," he says. "It’s about people. If companies really believe that ‘our employees are our greatest asset,’ then investing in their safety should be the easiest decision they ever make."

This is a conversation you don’t want to miss.

See the full episode with Stephen Ojji on the Energy Tech Startups Podcast below, or click here to listen.

———

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.

CenterPoint has partnered with Atlanta-based Osmose and Australia-based Neara to use AI-powered predictive modeling to inform decisions on restorations and risk. Photo via Getty Images

CenterPoint partners with AI and infrastructure companies to boost reliability

power partnership

Houston utilities giant CenterPoint is partnering with companies from Atlanta and Australia to use AI to increase data accuracy and strengthen the power grid.

The partnership is part of a collaboration between AI-powered predictive modeling platform company Neara and utility infrastructure asset assessment solutions company Osmose, according to a news release.

Last year, CenterPoint Energy announced an agreement with Neara for engineering-grade simulations and analytics and to deploy Neara’s AI capabilities across CenterPoint’s Greater Houston service area. Now, Neaera will work with Osmose to give energy providers like CenterPoint more up-to-date data to inform decisions on restorations and risks.

CenterPoint Energy is already using the partnership's tools to improve network reliability and enhance its storm preparedness.

"At CenterPoint Energy, we are focused every day on building the most resilient coastal grid in the nation and increasing the resiliency of the communities we are privileged to serve," Eric Easton, VP of Grid Transformation at CenterPoint Energy, said in a news release.

According to Osmose, its services to CenterPoint can result in repair cost savings of up to 70 percent and boost restoration times by up to 80 percent. Osmose also said its services assist with being 25 percent better at ensuring the most critical repairs happen first.

"By integrating Neara's AI-driven modeling with our industry-leading field services, we're giving utilities a powerful tool to make smarter, more data-driven decisions," Mike Adams, CEO of Osmose, said in a news release. "Accurate asset data is the foundation for a resilient grid, and this partnership provides the precision needed to maximize reliability and performance."

Ultimately, the companies say the partnership aims to help minimize disruptions and improve reliability for CenterPoint customers.

"As we work to leverage technology to deliver better outcomes for our customers, we're continuing to enhance our advanced modeling capabilities, which includes collaborating with cutting-edge technology providers like Neara and Osmose,” Easton added in the release.

Houston energy leader Barbara Burger shared her key takeaways from CERAWeek 2025 with InnovationMap. Photo courtesy of CERAWeek

Houston energy expert shares key takeaways from CERAWeek 2025

guest column

What a difference a year makes.

I have been coming to CERAWeek for as long as I can remember and the Agora track within CERAWeek since it originated. Although freshness likely distorts my thinking, I cannot remember a CERAWeek that seemed so different from the previous year's than this one.

This certainly isn’t a comprehensive summary of the conference, but some of my key take forwards from last week's events.

It’s all about power.

It seemed like everyone associated with the power value chain showed up. Developers, turbine manufacturers, utilities, oil and gas, renewables, geothermal, nuclear, storage, hyperscalers, and lots of innovative companies that aim to squeeze more out of the grid we already have. Most of the companies embraced the “all of the above” sentiment and despite moderators (and some key notes) attempt to force technology picks, most didn’t take the bait.

Practical is in.

Real issues – choke points in supply chains and the workforce, permit timing, cost increases in new generation – were openly discussed both on the stage and in the countless meetings and meet ups in partner rooms and in open spaces throughout the Hilton Americas and the GR Brown.

AI was everywhere.

While there was an understanding that not all the power load growth is coming from AI and Data Centers, that segment was getting all the attention. AI went beyond the retail and human enablement to AI for Optimization and AI for Innovation. The symbiosis of Tech and Energy was evident – power is a constraint, and AI is a game changer. S&P (CERAWeek’s organizer) did a great job of weaving this theme across the conference in both the Executive and Agora sessions.

More gas… and less hydrogen.

Whether it was LNG or gas to power or methane emission management, the US’s dominance in gas was front and center. Hydrogen was largely absent from the Executive talks and where it was topical in the Agora sessions, the need for better economics was made clear.

Consistency and balance are needed for this sector.

I am unsure whether it is a “stay calm and carry on” approach, as one leader fashioned, or rather a “carry on” message and imperative. Phrases like “one extreme to another” were heard on stage and in the hallways. The oil and gas CEOs talked more openly about their base business than they had in the last four years but they also talked about their decarbonization activities as well as commercialization of new technologies and value chains.

The macro-economic picture cast long shadows.

While few talks onstage addressed tariffs, consumer sentiment, inflation and unemployment (including those from government officials), the talks in the halls and private meetings certainly did. And while some argued that “the end justifies the means,” it wasn’t an argument that most seemed to buy into.

There is a lot of tripping up on labels.

Politics makes our sector more polarizing than it should or needs to be. Climatetech, Sustainability, Cleantech – some were labels with broad objectives, and some were meant to be binary or exclusionary. "Energy Transition" for some meant a binary replacement of fossil fuels with renewables, and for others, it meant an evolution of a system in multiple dimensions. In any event, a lot of energy is being spent on the labels and the narratives. I don’t have an easy answer for this other than to fall back to longer discussions and less use of labels that have lots of meanings and can quickly move a constructive discussion onto the third rail.

Collaboration is key and vital in this uncertain world.

The attendance of approximately 10,000 spanned the breadth of energy, those who make, move, and use it from around the globe—in other words, everyone—with a strong tone of inclusion. CERAWeek, after all, is all about convening and collaboration, and this played out in the programming and the networking. The messages about practicality, consistency, balance and “all of the above” and the storm clouds of the extremes seemed to put everyone in a similar boat: Am I being too hopeful that this will lead to more and more collaboration within the sector to advance the multiple aims of affordability, reliability, security, resiliency and sustainability?

The next-generation workforce is a strategic imperative.

The NextGen cohort in Agora was launched with 100+ graduate students from all over coming to see the energy sector close up. Kudos to S&P for making this investment and to all the conference attendees who spent time talking to the students about their research, their interests, and, importantly, sharing their career stories. Relationships were born at CERAWeek.

Houston showed well for the conference and Mother Nature played nice. The days were sunny and dry, and the evening temperatures fit the outdoor events well. The schedule and pace of CERAWeek is exhausting, and most people were worn out by Thursday.

CERAWeek 2025 is in the books; the connections made, and messages heard set the tone for the year ahead.

Until CERAWeek 2026.

------

Barbara J. Burger is a startup adviser and mentor. She is the independent Director of Bloom Energy and is an advisor to numerous organizations, including Lazard Inc., Syzygy Plasmonics, Energy Impact Partners and others. She previously led corporate innovation for two decades at Chevron and served on the board of directors for Greentown Labs.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston geothermal company raises $97M Series B

fresh funding

Houston-based geothermal energy startup Sage Geosystems has closed its Series B fundraising round and plans to use the money to launch its first commercial next-generation geothermal power generation facility.

Ormat Technologies and Carbon Direct Capital co-led the $97 million round, according to a press release from Sage. Existing investors Exa, Nabors, alfa8, Arch Meredith, Abilene Partners, Cubit Capital and Ignis H2 Energy also participated, as well as new investors SiteGround Capital and The UC Berkeley Foundation’s Climate Solutions Fund.

The new geothermal power generation facility will be located at one of Ormat Technologies' existing power plants. The Nevada-based company has geothermal power projects in the U.S. and numerous other countries around the world. The facility will use Sage’s proprietary pressure geothermal technology, which extracts geothermal heat energy from hot dry rock, an abundant geothermal resource.

“Pressure geothermal is designed to be commercial, scalable and deployable almost anywhere,” Cindy Taff, CEO of Sage Geosystems, said in the news release. “This Series B allows us to prove that at commercial scale, reflecting strong conviction from partners who understand both the urgency of energy demand and the criticality of firm power.”

Sage reports that partnering with the Ormat facility will allow it to market and scale up its pressure geothermal technology at a faster rate.

“This investment builds on the strong foundation we’ve established through our commercial agreement and reinforces Ormat’s commitment to accelerating geothermal development,” Doron Blachar, CEO of Ormat Technologies, added in the release. “Sage’s technical expertise and innovative approach are well aligned with Ormat’s strategy to move faster from concept to commercialization. We’re pleased to take this natural next step in a partnership we believe strongly in.”

In 2024, Sage agreed to deliver up to 150 megawatts of new geothermal baseload power to Meta, the parent company of Facebook. At the time, the companies reported that the project's first phase would aim to be operating in 2027.

The company also raised a $17 million Series A, led by Chesapeake Energy Corp., in 2024.

Houston expert discusses the clean energy founder's paradox

Guest Column

Everyone tells you to move fast and break things. In clean energy, moving fast without structural integrity means breaking the only planet we’ve got. This is the founder's paradox: you are building a company in an industry where the stakes are existential, the timelines are glacial, and the capital requires patience.

The myth of the lone genius in a garage doesn’t really apply here. Clean energy startups aren’t just fighting competitors. They are fighting physics, policy, and decades of existing infrastructure. This isn’t an app. You’re building something physical that has to work in the real world. It has to be cheaper, more reliable, and clearly better than fossil fuels. Being “green” alone isn’t enough. Scale is what matters.

Your biggest risks aren’t competitors. They’re interconnection delays, permitting timelines, supply chain fragility, and whether your first customer is willing to underwrite something that hasn’t been done before.

That reality creates a brutal filter. Successful founders in this space need deep technical knowledge and the ability to execute. You need to understand engineering, navigate regulation, and think in terms of markets and risk. You’re not just selling a product. You’re selling a future where your solution becomes the obvious choice. That means connecting short-term financial returns with long-term system change.

The capital is there, but it’s smarter and more demanding. Investors today have PhDs in electrochemistry and grid dynamics. They’ve been burned by promises of miracle materials that never left the lab. They don't fund visions; they fund pathways to impact that can scale and make financial sense. Your roadmap must show not just a brilliant invention, but a clear, believable plan to drive costs down over time.

Capital in this sector isn’t impressed by ambition alone. It wants evidence that risk is being retired in the right order — even if that means slower growth early.

Here’s the upside. The difficulty of clean energy is also its strength. If you succeed, your advantage isn’t just in software or branding. It’s in hardware, supply chains, approvals, and years of hard work that others can’t easily copy. Your real competitors aren’t other startups. They’re inertia and the existing system. Winning here isn’t zero-sum. When one solution scales, it helps the entire market grow.

So, to the founder in the lab, or running field tests at a remote site: your pace will feel slow. The validation cycles are long. But you are building in the physical world. When you succeed, you don’t have an exit. You have a foundation. You don't just have customers; you have converts. And the product you ship doesn't just generate revenue; it creates a legacy.

If your timelines feel uncomfortable compared to software, that’s because you’re operating inside a system designed to resist change. And let’s not forget you are building actual physical products that interact with a complex world. Times are tough. Don’t give up. We need you.

---

Nada Ahmed is the founding partner at Houston-based Energy Tech Nexus.

Houston maritime startup raises $43M to electrify cargo vessels

A Houston-based maritime technology company that is working to reduce emissions in the cargo and shipping industry has raised VC funding and opened a new Houston headquarters.

Fleetzero announced that it closed a $43 million Series A financing round this month led by Obvious Ventures with participation from Maersk Growth, Breakthrough Energy Ventures, 8090 Industries, Y Combinator, Shorewind, Benson Capital and others. The funding will go toward expanding manufacturing of its Leviathan hybrid and electric marine propulsion system, according to a news release.

The technology is optimized for high-energy and zero-emission operation of large vessels. It uses EV technology but is built for maritime environments and can be used on new or existing ships with hybrid or all-electric functions, according to Fleetzero's website. The propulsion system was retrofitted and tested on Fleetzero’s test ship, the Pacific Joule, and has been deployed globally on commercial vessels.

Fleetzero is also developing unmanned cargo vessel technology.

"Fleetzero is making robotic ships a reality today. The team is moving us from dirty, dangerous, and expensive to clean, safe, and cost-effective. It's like watching the future today," Andrew Beebe, managing director at Obvious Ventures, said in the news release. "We backed the team because they are mariners and engineers, know the industry deeply, and are scaling with real ships and customers, not just renderings."

Fleetzero also announced that it has opened a new manufacturing and research and development facility, which will serve as the company's new headquarters. The facility features a marine robotics and autonomy lab, a marine propulsion R&D center and a production line with a capacity of 300 megawatt-hours per year. The company reports that it plans to increase production to three gigawatt-hours per year over the next five years.

"Houston has the people who know how to build and operate big hardware–ships, rigs, refineries and power systems," Mike Carter, co-founder and COO of Fleetzero, added in the release. "We're pairing that industrial DNA with modern batteries, autonomy, and software to bring back shipbuilding to the U.S."