Syzygy Plasmonics has partnered with Volycys on its NovaSAF 1 project, which will convert biogas into sustainable aviation fuel in Uruguay. Photo courtesy of Syzygy

Houston-based Syzygy Plasmonics has announced a partnership with Velocys, another Houston company, on its first-of-its-kind sustainable aviation fuel (SAF) production project in Uruguay.

Velocys was selected to provide Fischer-Tropsch technology for the project. Fischer-Tropsch technology converts synthesis gas into liquid hydrocarbons, which is key for producing synthetic fuels like SAF.

Syzygy estimates that the project, known as NovaSAF 1, will produce over 350,000 gallons of SAF annually. It is backed by Uruguay’s largest dairy and agri-energy operations, Estancias del Lago, with permitting and equipment sourcing ongoing. Syzygy hopes to start operations by 2027.

"This project proves that profitable SAF production doesn't have to wait on future infrastructure," Trevor Best, CEO of Syzygy Plasmonics, said in a news release. "With Velocys, we're bringing in a complete, modular solution that drives down overall production costs and is ready to scale. Uruguay is only the start."

The NovaSAF 1 facility will convert dairy waste and biogas into drop-in jet fuel using renewable electricity and waste gas via its light-driven GHG e-Reforming technology. The facility is expected to produce SAF with at least an 80 percent reduction in carbon intensity compared to Jet A fuel.

Syzygy will use Velocys’ microFTL technology to convert syngas into high-yield jet fuel. Velocys’ microFTL will help maximize fuel output, which will assist in driving down the cost required to produce synthetic fuel.

"We're proud to bring our FT technology into a project that's changing the game," Matthew Viergutz, CEO of Velocys, added in the release. "This is what innovation looks like—fast, flexible, and focused on making SAF production affordable."

Syzygy Plasmonics will develop a facility, known as NovaSAF 1, to convert biogas into sustainable aviation fuel in Uruguay. Photo courtesy of Syzygy

Syzygy unveils plans for groundbreaking sustainable aviation fuel facility

coming soon

Houston-based Syzygy Plasmonics announced plans to develop what it calls the world's first electrified facility to convert biogas into sustainable aviation fuel (SAF).

The facility, known as NovaSAF 1, will be located in Durazno, Uruguay. It is expected to produce over 350,000 gallons of SAF annually, which would be considered “a breakthrough in cost-effective, scalable clean fuel,” according to the company.

"This is more than just a SAF plant; it's a new model for biogas economics," Trevor Best, CEO of Syzygy Plasmonics, said in a news release. "We're unlocking a global asset class of underutilized biogas sites and turning them into high-value clean fuel hubs without pipelines, costly gas separation, or subsidy dependence.”

The project is backed by long-term feedstock and site agreements with one of Uruguay's largest dairy and agri-energy operations, Estancias del Lago, while the permitting and equipment sourcing are ongoing alongside front-end engineering work led by Kent.

Syzygy says the project will result in a 50 percent higher SAF yield than conventional thermal biogas reforming pathways and will utilize both methane and CO2 naturally found in biogas as feedstocks, eliminating the need for expensive CO2 separation technologies and infrastructure. Additionally, the modular facility will be designed for easy replication in biogas-rich regions.

The new facility is expected to begin commercial operations in Q1 2027 and produce SAF with at least an 80 percent reduction in carbon intensity compared to Jet A fuel. The company says that once fully commercialized the facility will produce SAF at Jet-A fuel cost parity.

“We believe NovaSAF represents one of the few viable pathways to producing SAF at jet parity and successfully decarbonizing air travel,” Best added in the release.

Fervo Energy claimed a top 10 spot on Time magazine and Statista’s new list of America’s Top GreenTech Companies of 2025. Photo via Getty Images.

8 Houston energy companies land on Time's top greentech list for 2025

top honor

The accolades keep rolling in for Houston-based Fervo Energy, a producer of geothermal power.

Fervo lands at No. 6 on Time magazine and Statista’s new list of America’s Top GreenTech Companies of 2025. The ranking recognizes sustainability-focused companies based on factors such as impact, financial strength, and innovation.

Time notes that Fervo broke ground in 2023 in Utah on what the company claims will be the world’s largest geothermal plant. The plant is scheduled to start supplying carbon-free electricity to the grid next year and to reach its 400-megawatt capacity in three years.

“Technologies like this only make a difference if we deploy them at large-scale in a way that can reduce carbon emissions and increase the reliability of the grid,” Fervo CEO Tim Latimer told Time in 2023.

The startup was named North American Company of the Year by research and consulting firm Cleantech Group for 2025. Fervo topped the Global Cleantech 100, Cleantech Group’s annual list of the world’s most innovative and promising cleantech companies.

Last year, Fervo also made Time’s list of the 200 Best Inventions of 2024. Fervo was recognized in the green energy category for its FervoFlex geothermal power system.

Founded in 2017, Fervo is now a unicorn, meaning its valuation as a private company exceeds $1 billion. The startup’s valuation is estimated at $1.4 billion. According to PitchBook data, the company raised $634 million in the fourth quarter of 2024.

In all, eight Houston-area companies appear among the top 250 greentech companies ranked by Time and Statista. Other than Fervo, they are:

  • No. 43 Lancium Technologies, an energy storage and distribution company
  • No. 50 Solugen, a producer of sustainable chemicals.
  • No. 56 Quaise Energy, which specializes in terawatt-scale geothermal power.
  • No. 129 Plus Power, a developer, owner and operator of battery storage projects.
  • No. 218 Dream Harvest, which promotes sustainable vertical farming.
  • No. 225 Cemvita, which uses synthetic biology to convert carbon emissions into bio-based chemicals.
  • No. 226 Syzygy Plasmonics, which decarbonizes chemical production.
Vermont-based BETA Technologies claimed the No. 1 spot. The company manufactures electric aircraft.
Houston energy leader Barbara Burger shared her key takeaways from CERAWeek 2025 with InnovationMap. Photo courtesy of CERAWeek

Houston energy expert shares key takeaways from CERAWeek 2025

guest column

What a difference a year makes.

I have been coming to CERAWeek for as long as I can remember and the Agora track within CERAWeek since it originated. Although freshness likely distorts my thinking, I cannot remember a CERAWeek that seemed so different from the previous year's than this one.

This certainly isn’t a comprehensive summary of the conference, but some of my key take forwards from last week's events.

It’s all about power.

It seemed like everyone associated with the power value chain showed up. Developers, turbine manufacturers, utilities, oil and gas, renewables, geothermal, nuclear, storage, hyperscalers, and lots of innovative companies that aim to squeeze more out of the grid we already have. Most of the companies embraced the “all of the above” sentiment and despite moderators (and some key notes) attempt to force technology picks, most didn’t take the bait.

Practical is in.

Real issues – choke points in supply chains and the workforce, permit timing, cost increases in new generation – were openly discussed both on the stage and in the countless meetings and meet ups in partner rooms and in open spaces throughout the Hilton Americas and the GR Brown.

AI was everywhere.

While there was an understanding that not all the power load growth is coming from AI and Data Centers, that segment was getting all the attention. AI went beyond the retail and human enablement to AI for Optimization and AI for Innovation. The symbiosis of Tech and Energy was evident – power is a constraint, and AI is a game changer. S&P (CERAWeek’s organizer) did a great job of weaving this theme across the conference in both the Executive and Agora sessions.

More gas… and less hydrogen.

Whether it was LNG or gas to power or methane emission management, the US’s dominance in gas was front and center. Hydrogen was largely absent from the Executive talks and where it was topical in the Agora sessions, the need for better economics was made clear.

Consistency and balance are needed for this sector.

I am unsure whether it is a “stay calm and carry on” approach, as one leader fashioned, or rather a “carry on” message and imperative. Phrases like “one extreme to another” were heard on stage and in the hallways. The oil and gas CEOs talked more openly about their base business than they had in the last four years but they also talked about their decarbonization activities as well as commercialization of new technologies and value chains.

The macro-economic picture cast long shadows.

While few talks onstage addressed tariffs, consumer sentiment, inflation and unemployment (including those from government officials), the talks in the halls and private meetings certainly did. And while some argued that “the end justifies the means,” it wasn’t an argument that most seemed to buy into.

There is a lot of tripping up on labels.

Politics makes our sector more polarizing than it should or needs to be. Climatetech, Sustainability, Cleantech – some were labels with broad objectives, and some were meant to be binary or exclusionary. "Energy Transition" for some meant a binary replacement of fossil fuels with renewables, and for others, it meant an evolution of a system in multiple dimensions. In any event, a lot of energy is being spent on the labels and the narratives. I don’t have an easy answer for this other than to fall back to longer discussions and less use of labels that have lots of meanings and can quickly move a constructive discussion onto the third rail.

Collaboration is key and vital in this uncertain world.

The attendance of approximately 10,000 spanned the breadth of energy, those who make, move, and use it from around the globe—in other words, everyone—with a strong tone of inclusion. CERAWeek, after all, is all about convening and collaboration, and this played out in the programming and the networking. The messages about practicality, consistency, balance and “all of the above” and the storm clouds of the extremes seemed to put everyone in a similar boat: Am I being too hopeful that this will lead to more and more collaboration within the sector to advance the multiple aims of affordability, reliability, security, resiliency and sustainability?

The next-generation workforce is a strategic imperative.

The NextGen cohort in Agora was launched with 100+ graduate students from all over coming to see the energy sector close up. Kudos to S&P for making this investment and to all the conference attendees who spent time talking to the students about their research, their interests, and, importantly, sharing their career stories. Relationships were born at CERAWeek.

Houston showed well for the conference and Mother Nature played nice. The days were sunny and dry, and the evening temperatures fit the outdoor events well. The schedule and pace of CERAWeek is exhausting, and most people were worn out by Thursday.

CERAWeek 2025 is in the books; the connections made, and messages heard set the tone for the year ahead.

Until CERAWeek 2026.

------

Barbara J. Burger is a startup adviser and mentor. She is the independent Director of Bloom Energy and is an advisor to numerous organizations, including Lazard Inc., Syzygy Plasmonics, Energy Impact Partners and others. She previously led corporate innovation for two decades at Chevron and served on the board of directors for Greentown Labs.

Here are all the events on CERAWeek's Agora track you can't miss if learning more about Houston energy innovation is your goal. Staff photo

Here are 20+ CERAWeek 2025 events featuring Houston energy leaders

where to be

CERAWeek 2025 will host more than 1,400 speakers at its annual energy-focused conference taking place March 10-14, with many hailing from Houston.

Under this year's theme, "Moving Ahead: Energy strategies for a complex world,” panels will tackle topics ranging from policy and regulation, geopolitics, power, grid, and electrification, AI and digital, managing emissions, and more.

Most of the innovation-themed events are organized under the Agora track and will feature many Houston-area startups, universities, companies, and scientists. Here are all the events on the Agora track you can't miss if you want to learn more about Houston energy innovation.

Transition in Action: Energy giants shaping a sustainable future

ExxonMobil's Senior Director, Climate Strategy & Technology Vijay Swarup will examine how major energy companies are driving energy transition goals along with panelists from S&P Global, Aramco Ventures and Gentari Sdn Bhd.

This panel is from 12:30-1 p.m. on Monday, March 10. More info here.

Syzygy Plasmonics | Deploying the World’s Most Economic Biogas to SAF Technology

Hear from Syzygy Plasmonics CEO Trevor Best about how the cleantech company's catalyst and reactor work and how the tools can dramatically reduce the cost of producing SAF from biogas from landfills, wastewater, and dairy farms.

This panel is from 2-2:30 p.m. on Monday, March 10. More info here.

Cemvita | The Future of Bioengineered Feedstocks: A Foresight Perspective

Cemvita CEO Moji Karimi will lead this panel.

This panel is from 4:30-5:15 p.m. on Monday, March 10. More info here.

Innovating with Purpose: Strengthening industrial-academic partnerships

David Dankworth, ExxonMobil's Hydrogen Technology Portfolio Manager, and Brian Korgel, the University of Texas Energy Institute Director, will be joined by leaders from MIT and S&P Global to discuss the crucial relationship between universities and industry in fostering purpose-driven innovation.

This panel is from 8:30–9 a.m. on Tuesday, March 11. More info here.

Solidec | Low-cost, Low-carbon Chemicals from Air

Solidec co-founder and CEO Ryan DuChanois will discuss how the company's approach to producing hydrogen peroxide and other key chemicals can be low-cost and low-carbon, creating a scalable path for a more sustainable chemical industry.

This panel is from 9-9:30 a.m. on Tuesday, March 11. More information here.

Collaboration Spotlight: The Carbon Hub: A public-private partnership leading the way to a sustainable carbon economy

Panelists from Rice University, Huntsman Advanced Materials, CERAWeek, The Kavli Foundation, and SABIC will discuss Rice's Carbon Hub's transformative power and what the future looks like for those creating this new carbon economy. Matteo Pasquali, the founding Director of the Carbon Hub, will be featured on the panel.

This panel is from 9:30-10 a.m. on Tuesday, March 11. More information here.

Rice University | Next-generation Electrolyzers and Electrolysis

Haotian Wang, Associate Professor in the Department of Chemical and Biomolecular Engineering at Rice University and co-founder of Solidec, will discuss the development of next-generation electrolyzers that enable lower-cost and more energy-efficient carbon capture, chemical manufacturing and critical metal recovery.

This panel is from 9:30–10:15 a.m. on Tuesday, March 11. More information here.

ExxonMobil | Real-world Progress on Building a Low-carbon Business

Schuyler Evans, ExxonMobil's CCS commerical and business development manager low carbon solutions, will speak on how the energy giant is navigating a complex energy transition and share insights into the strategic thinking behind building a new business that helps reduce emissions.

This panel is from 10-10:30 a.m. on Tuesday, March 11. More information here.

Enovate.AI | AI-driven Advantage: Automate. Optimize. Decarbonize.

Enovate.AI Chief Experience Officer Rebecca Nye, joined by Last Mile Production, will show how its 3-clicks digital strategy empowers operators to make faster, smarter decisions—reducing emissions, enhancing productivity and unlocking new levels of profitability.

This panel is from 10:30–11 a.m. on Tuesday, March 11. More information here.

Financing the Future: Scaling clean energy through innovative investment strategies

Jim Gable, president of Chevron Technology Ventures and vice president of innovation, along with Greentown Lab's new CEO Georgina Campbell Flatter, will discuss the bankability of technologies in different geographies, investment opportunities in emerging markets, sources of funding and risk management strategies investors are using. Panelists also include leaders from Siemens Energy, Energy Impact Partners, and S&P Global Commodity Insights.

This panel is from 12:30–1:10 p.m. on Tuesday, March 11. More information here.

Sage Geosystems | Geothermal at the Speed of Need: How Sage Geosystems is meeting growing energy demand

Learn from Jason Peart, general manager of strategy and development, how Sage's approach to geothermal technology is tackling the fast-growing energy demands of critical sectors, including data centers, utilities, energy storage, and US Department of Defense projects.

This panel is from 1:30–2 p.m. on Tuesday, March 11. More information here.

Rice University | Valuing Nature-based Solutions for CO2 Removal

Carrie Masiello, director of the Rice Sustainability Institute, will introduce to the breadth of nature-based solutions possible, explore some of the most exciting opportunities and give guidance on how to think rigorously about matching individual NBS opportunities to specific portfolio needs.

This panel is from 1:30–2:15 p.m. on Tuesday, March 11. More information here.

Square Robot | Bridging the Divide: How Square Robot's tank inspections align corporate strategy with on-the-ground reality

Square Robot CEO David Lamont will discuss how companies can keep their tank assets online by adopting new technology and navigating the challenges of aligning corporate objectives with site-level realities.

This panel is from 3–3:30 p.m. on Tuesday, March 11. More information here.

The Green Gold Rush: A multi-trillion dollar opportunity?

Bobby Tutor, chairman of Houston Energy Transition Initiative and CEO of Artemis Energy Partners, will be joined by leaders from Accenture, S&P Global, and BeyondNetZero to discuss the immense economic potential of climate solutions and highlight the business opportunities created by the transition to a low-carbon economy.

This panel is from 4–4:30 p.m. on Tuesday, March 11. More information here.

ExxonMobil | Applying Technology to Maximize Value in the Permian Basin

James Ritchie, Exxon's vice president upstream technology portfolio, will share the latest technologies being developed and deployed to improve recovery and capital efficiency in the Permian Basin and demonstrate how these technologies and innovations maximize overall value while reducing greenhouse gas emissions and water usage.

This panel is from 2:30–3 p.m. on Wednesday, March 12. More information here.

Rice University | Plasma Foundry for Scalable Industrial Decarbonization

Aditya Mohite, a Rice professor and the faculty director of the Rice Engineering Initiative for Energy Transition and Sustainability (REINVENTS), will share how The Plasma Foundry, a 1:1 customized accelerator at Rice, is using cold plasma technology and its accelerator model to provide disruptive solutions at scale.

This panel is from 9:30–10:15 a.m. on Thursday, March 13. More information here.

Fervo Energy | Speed and Scale: The Geothermal Decade Is Now

Quinn Woodard Jr., Fervo Energy's senior director, power generation and surface facilities, will discuss how the company is pioneering transformative EGS technology to power data centers, homes and beyond.

This panel is from 10:30–11 a.m. on Thursday, March 13. More information here.

Corrolytics | Digitizing and Revolutionizing Corrosion Detection and Monitoring for Industrial Assets

Anwar Sadek, Corrolytics co-founder and CEO, will share how the company is revolutionizing corrosion detection and monitoring with patented technology to proactively enhance safety, reduce costs and extend asset lifespan.

This panel is from 10:30–11 a.m. on Thursday, March 13. More information here.

Zeta Energy | The Rise of Lithium-Sulfur Batteries: A solution to critical metal constraints

Rodrigo Salvatierra, Zeta's chief science officer, will introduce Zeta Energy’s lithium-sulfurized carbon technology, which effectively addresses the key limitations of lithium-sulfur batteries.

This panel is from 3–3:30 p.m. on Thursday, March 13. More information here.

Future Cities on the Move: Innovative pathways for sustainable urban mobility

Lisa Lin, Harris County's director of sustainability, will speak on this panel on successful public-private partnerships driving innovation in sustainable transport by leveraging technology and data analytics. She'll be joined by Aberdeen's council co-lead and leaders from S&P Global and GreenCap, based in Cape Town, South Africa.

This panel is from 3:30–4 p.m. on Thursday, March 13. More information here.

Collaboration Spotlight: Building a resilient Gulf Coast energy and chemical sector

Greater Houston Partnership and HETI's Jane Stricker will join Ramanan Krishnamoorti from the University of Houston and leaders from Argonne National Laboratory and SABIC to explore opportunities and pathways to strengthen the US Gulf Coast’s global leadership position in base chemical manufacturing and the national security and economic opportunities that innovation and process integration create.

This panel is from 4:30–5 p.m. on Thursday, March 13. More information here.

Naomi Halas has pioneered insights into how light and matter interact at small scales and co-founded Houston-based Syzygy Plasmonics. Photo by Jeff Fitlow/Rice University

Pioneering Houston professor earns prestigious 2025 Franklin Institute Award

medal winner

Rice University professor and nanoscience pioneer Naomi Halas has received the 2025 Benjamin Franklin Medal in Chemistry.

In addition to her role at Rice, Halas is co-founder and technical advisor of Syzygy Plasmonics, a Houston startup that relies on light instead of combustion as an energy source. This enables efficient, sustainable transformation of low-carbon ammonia into hydrogen when powered by renewable electricity.

Halas earned the Franklin Medal “for the creation and development of nanoshells — metal-coated nanoscale particles that can capture light energy — for use in many biomedical and chemical applications,” according to a release from Rice.

Halas’ work has pioneered insights into how light and matter interact at small scales, according to Rice. She joined Rice in 1989 to support the late Richard Smalley’s advancements in nanoscale science and technology.

“A lot of people were talking about nano like it was something completely new,” Halas said in the release. “But I realized it was really just chemistry viewed in a different way, and that really got me thinking about how I can combine the worlds of laser science and nanoscience.”

That shift in perspective led to the development of nanoparticles that spawned innovations in fields such as cancer therapy, water purification, and renewable energy.

“Naomi’s contributions to nanoscience have not only expanded the boundaries of our understanding but also transformed real-world applications in medicine, energy and beyond,” Rice President Reginald DesRoches added. “Her pioneering work on nanoshells exemplifies the spirit of innovation that defines Rice.”

One of Halas’ projects led to the founding of Syzygy, which develops light-driven, all-electric chemical reactors for inexpensive, sustainable production of hydrogen fuel. The company was named to was named to Fast Company's energy innovation list last year.

Halas is the first Rice faculty member to be elected to both the National Academy of Sciences and the National Academy of Engineering for research carried out at the university. She also has been elected to the National Academy of Inventors, the American Academy of Arts and Sciences, and the Royal Danish Academy of Science and Letters. Halas holds 30 patents in the fields of medicine, chemistry, physics and engineering.

The Franklin Medal is awarded by the Franklin Institute of Philadelphia. Many scientists who have received the award have gone on to win Nobel prizes.

As a recipient of the Franklin honor, Halas will receive a $10,000 honorarium and a 14-karat gold medal during an award ceremony May 1 in Philadelphia.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

What EPA’s carbon capture and storage permitting announcement means for Texas

The View From HETI

Earlier this month, Texas was granted authority by the federal government for permitting carbon capture and storage (CCS) projects. This move could help the U.S. cut emissions while staying competitive in the global energy game.

In June, the U.S. Environmental Protection Agency (EPA) proposed approving Texas’ request for permitting authority under the Safe Drinking Water Act (SDWA) for Class VI underground injection wells for carbon capture and storage (CCS) in the state under a process called “primacy.” The State of Texas already has permitting authority for other injection wells (Classes I-V). In November, the EPA announced final approval of Texas’ primacy request.

Why This Matters for Texas

Texas is the headquarters for virtually every segment of the energy industry. According to the U.S. Energy Information Administration, Texas is the top crude oil- and natural-gas producing state in the nation. The state has more crude oil refineries and refining capacity than any other state in the nation. Texas produces more electricity than any other state, and the demand for electricity will grow with the development of data centers and artificial intelligence (AI). Simply put, Texas is the backbone of the nation’s energy security and competitiveness. For the nation’s economic competitiveness, it is important that Texas continue to produce more energy with less emissions. CCS is widely regarded as necessary to continue to lower the emissions intensity of the U.S. industrial sector for critical products including power generation, refining, chemicals, steel, cement and other products that our country and world demand.

The Greater Houston Partnership’s Houston Energy Transition Initiative (HETI) has supported efforts to bring CCUS to a broader commercial scale since the initiative’s inception.

“Texas is uniquely positioned to deploy CCUS at scale, with world-class geology, a skilled workforce, and strong infrastructure. We applaud the EPA for granting Texas the authority to permit wells for CCUS, which we believe will result in safe and efficient permitting while advancing technologies that strengthen Texas’ leadership in the global energy market,” said Jane Stricker, Executive Director of HETI and Senior Vice President, Energy Transition at the Greater Houston Partnership.

What is Primacy, and Why is it Important?

Primacy grants permitting authority for Class VI wells for CCS to the Texas Railroad Commission instead of the EPA. Texas is required to follow the same strict standards the EPA uses. The EPA has reviewed Texas’ application and determined it meets those requirements.

Research suggests that Texas has strong geological formations for CO2 storage, a world-class, highly skilled workforce, and robust infrastructure primed for the deployment of CCS. However, federal permitting delays are stalling billions of dollars of private sector investment. There are currently 257 applications under review, nearly one-quarter of which are located in Texas, with some applications surpassing the EPA’s target review period of 24 months. This creates uncertainty for developers and investors and keeps thousands of potential jobs out of reach. By transferring permitting to the state, Texas will apply local resources to issue Class VI permits across the states in a timely manner.

Texas joins North Dakota, Wyoming, Louisiana, West Virginia and Arizona with the authority for regulating Class VI wells.

Is CCS safe?

A 2025 study by Texas A&M University reviewed operational history and academic literature on CCS in the United States. The study analyzed common concerns related to CCS efficacy and safety and found that CCS reduces pollutants including carbon dioxide, particulate matter, sulfur oxides and nitrogen oxides. The research found that the risks of CCS present a low probability of impacting human life and can be effectively managed through existing state and federal regulations and technical monitoring and safety protocols.

What’s Next?

The final rule granting Texas’ primacy will become effective 30 days after publication in the Federal Register. Once in effect, the Texas Railroad Commission will be responsible for permitting wells for carbon capture, use and storage and enforcing their safe operation.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston energy expert: How the U.S. can turn carbon into growth

Guets Column

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

UH launches new series on AI’s impact on the energy sector

where to be

The University of Houston's Energy Transition Institute has launched a new Energy in Action Seminar Series that will feature talks focused on the intersection of the energy industry and digitization trends, such as AI.

The first event in the series took place earlier this month, featuring Raiford Smith, global market lead for power & energy for Google Cloud, who presented "AI, Energy, and Data Centers." The talk discussed the benefits of widespread AI adoption for growth in traditional and low-carbon energy resources.

Future events include:

“Through this timely and informative seminar series, ETI will bring together energy professionals, researchers, students, and anyone working in or around digital innovation in energy," Debalina Sengupta, chief operating officer of ETI, said in a news release. "We encourage industry members and students to register now and reap the benefits of participating in both the seminar and the reception, which presents a fantastic opportunity to stay ahead of industry developments and build a strong network in the Greater Houston energy ecosystem.”

The series is slated to continue throughout 2026. Each presentation is followed by a one-hour networking reception. Register for the next event here.