getting recognized

2 Houston cleantech companies rank on most innovative energy companies lists

Fast Company magazine just placed Fervo Energy and Syzygy Plasmonics on its energy innovation list. Photo via Getty Images

A pair of Houston energy startups have been named among the 10 most innovative energy companies for 2024.

Fast Company magazine just placed Fervo Energy and Syzygy Plasmonics on its energy innovation list. In all, 606 companies and organizations across a variety of industries were recognized for “reshaping industries and culture.”

Fervo produces carbon-free geothermal energy. Its existing geothermal project is in Nevada, and it’s building a geothermal project in Utah. The company recently raised $244 million.

“Solar and wind are cheap, but they don’t provide the kind of always-on dispatchable electricity that hydropower, hydrogen, and nuclear do; even at current high prices, enhanced geothermal is still cheaper than those other sources,” Fast Company notes.

The Fast Company accolade comes shortly after Time and Statista named Fervo one of the top greentech companies for 2024.

By relying on light rather than combustion to generate chemical reactions, Syzygy is taking on the use of fossil fuels in the chemical industry, Fast Company points out. Fossil fuels account for about 18 percent of the world’s industrial CO2 emissions.

Fast Company outlines some of Syzygy’s accomplishments in 2023:

  • Gained an undisclosed amount of funding from Mitsubishi Heavy Industries.
  • Completed its Pearland manufacturing facility.
  • Wrapped up 1,000 cumulative hours of testing on its ammonia-splitting reactor cell, capable of producing 200 kilograms of hydrogen per day.

———

This article originally ran on InnovationMap.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News