Baker Hughes has teamed up with Dallas-based Frontier Infrastructure and has been selected by the U.S. Air Force and the Department of Defense for global clean energy projects. Photo via bakerhughes.com.

Energy tech company Baker Hughes announced two major clean energy initiatives this month.

The Houston-based company has teamed up with Dallas-based Frontier Infrastructure to develop carbon capture and storage (CCS), power generation and data center operations in the U.S.

Baker Hughes will supply technology for Frontier’s nearly 100,000-acre CCS hub in Wyoming, which will provide open-access CO2 storage for manufacturers and ethanol producers, as well as future Frontier projects. Frontier has already begun drilling activities at the Wyoming site.

“Baker Hughes is committed to delivering innovative solutions that support increasing energy demand, in part driven by the rapid adoption of AI, while ensuring we continue to enable the decarbonization of the industry,” says Lorenzo Simonelli, chairman and CEO of Baker Hughes.

Additionally, Baker Hughes announced this week that it was selected by the U.S. Air Force and the Department of Defense’s Chief Digital and Artificial Intelligence Office (CDAO) to develop utility-scale geothermal power plants that would power global U.S. military bases.

Baker Hughes was granted an "awardable," or eligible, status through the CDAO's Tradewinds Solutions Marketplace, which aims to accelerate "mission-critical technologies," including AI, machine learning and resilient energy technologies. The potential geothermal plants would provide cost-effective electricity, even during a grid outage.

“The ability of geothermal to provide reliable, secure baseload power makes it an ideal addition to America’s energy mix,” Ajit Menon, vice president of geothermal, oilfield services and equipment at Baker Hughes, said in a news release. “Baker Hughes has been a pioneer in this field for more than 40 years and our unique subsurface-to-surface expertise and advanced technology across the geothermal value chain will help the U.S. military unlock this critical domestic energy source, while simultaneously driving economic growth and energy independence.”

Baker Hughes has incorporated a new tech platform for its CCUS operations. Photo via Getty Images

Baker Hughes launches new digital platform for CCUS operations

now online

Baker Hughes has announced the debut of its digital platform to track CO2 volumes in real time, CarbonEdge. CarbonEdge utilizes carbon capture utilization and sequestration journey, which includes pipeline flows.

Powered by Cordant, the Houston-based Baker Hughes boasts CarbonEdge is “the first end-to-end, risk-based digital platform for CCUS operations that provides comprehensive support, regulatory reporting, and operational risk management,” according to the company.

The connectivity across the entire CCUS project lifecycle will assist customers to better improve decision-making, enhance operational efficiency, identify and manage risk, and simplify regulatory reporting. Applicable to any CCUS infrastructure applied across multiple industries, CarbonEdge joins other Baker Hughes’ digital solutions in JewelSuite, Leucipa, and Cordant, which all span the energy and industrial value chains to help ensure lower emissions.

“CCUS technology solutions are essential for driving decarbonization of the energy and industrial sectors on our path to solving for climate change,” Baker Hughes Chairman and CEO Lorenzo Simonelli says in a news release.

The launch customer will be Wabash Valley Resources (WVR), which is a low-carbon ammonia fertilizer pioneer in Indiana.WVR will deploy Baker Hughes’ CarbonEdge platform to monitor, measure, and verify volumes of CO2 transported, collected, and sequestered underground.

“With the launch of CarbonEdge, we not only expand our portfolio of digital solutions to support new energies and empower our customers’ ability to mitigate risk while enhancing operational efficiency, but also take a bold step toward a future with more sustainable energy development,” Simonelli continues.”We look forward to working alongside Wabash Valley Resources to refine and evolve CarbonEdge, ensuring it continues to meet the dynamic needs of a rapidly changing industry.”
In total, HIF has raised $200 million this year. Photo via hifglobal.com

Japanese agency invests $36M into Houston e-fuels company's portfolio

coming in hot

Houston-based electrofuel company HIF Global has secured a $36 million investment from the Japan Organization for Metals and Energy Security, a government agency.

The investment, made through an e-fuel subsidiary of Japanese energy company Idemitsu Kosan, is earmarked for HIF’s e-fuel projects in the U.S., Australia, Chile, and Uruguay.

Earlier this year, Idemitsu led a $164 million investment round in HIF. Of that amount, Idemitsu chipped in $114 million. Other investors included Houston-based Baker Hughes along with AME, EIG, Gemstone Investments, and Porsche.

In total, HIF has raised $200 million this year.

“Japan set a priority for the commercial introduction of e-fuels into its fuel supply to support their mandate for 46 percent [greenhouse gas] emissions reduction by 2030. We have already proven e-fuels are a real solution with over 18 months of e-fuels production from our Haru Oni facility in southern Chile,” says Cesar Norton, president and CEO of HIF.

In 2023, Idemitsu agreed to buy e-methanol from HIF’s $6 billion plant in Matagorda County. HIF says the plant will be the world’s first large-scale e-fuel facility. The plant is expected to produce about 1.4 million metric tons per year of e-methanol and about 300,000 metric tons of green hydrogen per year by 2027.

HIF, founded in 2016, aims to produce 150,000 barrels per day of e-fuel and recycle 25 million metric tons per year of carbon dioxide by 2035. E-fuels, which are synthetic alternatives to fossil fuels, include e-gasoline, e-diesel, and e-sustainable aviation fuel converted from e-methanol.

Using electrolyzers powered by renewable energy, HIF begins the e-fuel process by separating hydrogen from oxygen in water. The company then couples the resulting green hydrogen with recycled carbon dioxide to create carbon-neutral e-fuels.

In a series of fireside chats, Houston energy leaders took the stage at OTC to discuss what their companies are doing in the energy transition space. Photo via LinkedIn

4 Houston energy execs sound off on future workforce, collaboration, and more at OTC

overheard

In addition to the massive exhibit floor, networking, and panels, the 2024 Offshore Technology Conference hosts thoughtful fireside chats with energy leaders throughout the ongoing conference taking place in Houston this week.

Four energy leaders from Houston took the stage to discuss what their companies are doing within the energy transition. Take a look at what topics each of the conversations tackled.

Chris Powers, vice president of CCUS at Chevron New Energies, on energy evolution and collaboration

Chris Powers introduced Chevron New Energies, an organization within Chevron that launched in 2021, to the crowd at OTC, describing the entity's focus points as CCUS, hydrogen, offsets and emerging technology, and renewable fuels — specifically things Chevron believes it has the competitive advantage.

One of the things Powers made clear in his fireside chat is that it's not going to be one, two, or even three technologies to significantly move the energy transition along, "it's going to take all the solutions to meet all the growing energy needs," he said.

And, he continued, this current energy transition the world is in isn't exactly new.

"We've been evolving our energy supply since the dawn of man," he said. "Our view is that the world has always been in an energy evolution."

"Hydrocarbons will continue to play a huge role in the years to come, and anyone who has a different view on that I think isn't being pragmatic," he continued.

Chevron has played a role in the clean energy market for decades, Powers said, pointing out Chevron Technology Ventures, which launched in the 1990s.

"No one can do this alone," he said, pointing specifically to the ongoing Bayou Bend joint venture that Chevron is working on with Equinor and TotalEnergies. "We have to bring together the right partners and the right skill sets."

Celine Gerson, group director, Americas, and president at Fugro USA, on the importance of data

Celine Gerson set the scene for Fugro, a geo data and surveying company that diversified its business beginning in 2015 to account for the energy transition. From traditional oil and gas to renewables, "it starts with the geo data," she said during her chat. She said big projects can't map out their construction without it, and then, when it comes to maintaining the equipment, the geo data is equally important.

Another message Gerson wanted to convey is that the skill sets from traditional offshore services translate to renewables. Fugro's employee base has evolved significantly over the past few years, and Gerson said that 50 percent of the workforce was hired over the past five years and 85 percent of the leadership has changed in the past seven.

Agility is what the industry needs, Celine Gerson said, adding that the "industry need to move fast and, in order to move fast, we need to look at things differently.

Attilio Pisoni, CTO of oilfield services and equipment at Baker Hughes, on the future workforce

In addition to the world making changes toward sustainability, the energy industry is seeing a workforce evolution as well, Attilio Pisoni said during his fireside chat, adding that inspiring a workforce is key to retention and encouraging innovation.

"We have a challenge in attracting young people," Pisoni said. "To be successful, you have to have a purpose."

That purpose? Combating climate change. And that, Pisoni said, needs to be able to be quantified. "As a society over all, we need to have a standard of measurement and accuracy in reporting," he said.

To future engineers, Pisoni emphasized the importance of learning outside your specific niche.

"Having seen where the world is now, whatever you study, have a concept and understanding of the system as a whole," he said.

Erik Oswald, vice president of advocacy and policy development at ExxonMobil Low Carbon Solutions, on transferable skills from upstream

When he looks at renewables and new energy, Erik Oswald said he sees a significant similarity for the talent and skill sets required in upstream oil and gas.

"A lot of the same skills are coming into focus" within the energy transition," Oswald said, specifying CCS and upstream.

Even in light of the transferrable workforce, the industry faces needs to grow its workforce in a significant way to keep up with demand — and keeping in mind the younger generations coming onto the scene.

"We're talking about recreating the entire oil and gas industry," Oswald said on preparing the workforce for the future of the energy industry. "We have to do it, it's not an option."

In partnership with Venture Metals +, Baker Hughes has saved over 125 million pounds of scrap metals from more than 50 of the company's locations around the world. Photo via bakerhughes.com

Houston energy company diverts over 125M pounds of scrap metals from landfills

reduce, reuse, recycle

For three years, Baker Hughes has been working with a full-scale scrap processor partner to divert scrap metal waste from landfills as a part of the company's net-zero commitment by 2050.

In partnership with Venture Metals +, Baker Hughes has saved over 125 million pounds of scrap metals from more than 50 of the company's locations around the world.

Venture Metals + collects, recycles, and manages the full recycling process of scrap materials, providing recycling, reclamation, and investment recovery as a service to industrial, manufacturing, and service facilities.

“The relationship that has been formed between Baker Hughes and Venture Metals is the definition of a true partnership. Over the many years we have collaborated on significant projects and there has been a foundation of trust, transparency and investment on both sides,” Venture Metals’ Vice-Chairman of the Board Mark Chazanow says in a news release. “Together, we have been able to do our part to improve the environment by circular and sustainable recycling while also capturing substantial revenue gain. We look forward to growing the partnership and seeing a bright future ahead together.”

According to the release, Baker Hughes plans to grow the partnership to introduce similar programs at five key locations around the world. Venture Metals+ also set up Baker Hughes with customized containers to help separate titanium, stainless steel, Inconel, and other recyclable metals.

“Reducing our environmental footprint is a critical focus area for our sustainability strategy as we continue to reduce waste, minimize the resources we use and promote circularity,” Allyson Anderson Book, chief sustainability officer at Baker Hughes, adds. “Through partners like Venture Metals +, we are minimizing waste and reusing scrap materials as much as possible for more sustainable operations.”

Chevron — as well as nine other Houston energy companies — was named a top company by Newsweek. Photo via chevron.com

10 Houston energy companies recognized as best workplaces on annual list

best of class

Newsweek recently recognized the country's top workplaces, and 10 Houston energy businesses made the cut.

The annual America's Greatest Workplaces 2023 list, which originally published in the fall, gave 10 Houston energy companies four stars or above.

ConocoPhillips is the only Houston-based energy company to receive five out of five stars. Baker Hughes, Exxon, S&B Engineers and Constructors, and KBR all received four-and-a-half stars. Chevron Corp., Halliburton, J-W Power Co., Q'MAX Solutions, and Valerus secured four stars each.

"Our commitment to engaging the full potential of our people to deliver the future of energy is at the core of everything we do," Rhonda Morris, vice president and chief human resources officer at Chevron, says in a news release. "We do this because our business succeeds best when our employees feel engaged and empowered, and we look forward to building on this momentum for years to come.”

The ranking identified the top 1,000 companies in the United States and is based off of a large employer survey, as well as a a sample set of over 61,000 respondents living and working in the U.S. In total, Newsweek factored in 389,000 company reviews across all industry sectors. The report was in partnership with Plant-A.

"In an economic climate where the job market remains competitive despite fears of a recession, employers who stand out as America's Greatest Workplaces may find they have substantial advantages over their competitors," writes Nancy Cooper, editor of Newsweek, about the report.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH's $44 million mass timber building slashed energy use in first year

building up

The University of Houston recently completed assessments on year one of the first mass timber project on campus, and the results show it has had a major impact.

Known as the Retail, Auxiliary, and Dining Center, or RAD Center, the $44 million building showed an 84 percent reduction in predicted energy use intensity, a measure of how much energy a building uses relative to its size, compared to similar buildings. Its Global Warming Potential rating, a ratio determined by the Intergovernmental Panel on Climate Change, shows a 39 percent reduction compared to the benchmark for other buildings of its type.

In comparison to similar structures, the RAD Center saved the equivalent of taking 472 gasoline-powered cars driven for one year off the road, according to architecture firm Perkins & Will.

The RAD Center was created in alignment with the AIA 2030 Commitment to carbon-neutral buildings, designed by Perkins & Will and constructed by Houston-based general contractor Turner Construction.

Perkins & Will’s work reduced the building's carbon footprint by incorporating lighter mass timber structural systems, which allowed the RAD Center to reuse the foundation, columns and beams of the building it replaced. Reused elements account for 45 percent of the RAD Center’s total mass, according to Perkins & Will.

Mass timber is considered a sustainable alternative to steel and concrete construction. The RAD Center, a 41,000-square-foot development, replaced the once popular Satellite, which was a food, retail and hangout center for students on UH’s campus near the Science & Research Building 2 and the Jack J. Valenti School of Communication.

The RAD Center uses more than a million pounds of timber, which can store over 650 metric tons of CO2. Aesthetically, the building complements the surrounding campus woodlands and offers students a view both inside and out.

“Spaces are designed to create a sense of serenity and calm in an ecologically-minded environment,” Diego Rozo, a senior project manager and associate principal at Perkins & Will, said in a news release. “They were conceptually inspired by the notion of ‘unleashing the senses’ – the design celebrating different sights, sounds, smells and tastes alongside the tactile nature of the timber.”

In addition to its mass timber design, the building was also part of an Energy Use Intensity (EUI) reduction effort. It features high-performance insulation and barriers, natural light to illuminate a building's interior, efficient indoor lighting fixtures, and optimized equipment, including HVAC systems.

The RAD Center officially opened Phase I in Spring 2024. The third and final phase of construction is scheduled for this summer, with a planned opening set for the fall.

Experts on U.S. energy infrastructure, sustainability, and the future of data

Guest column

Digital infrastructure is the dominant theme in energy and infrastructure, real estate and technology markets.

Data, the byproduct and primary value generated by digital infrastructure, is referred to as “the fifth utility,” along with water, gas, electricity and telecommunications. Data is created, aggregated, stored, transmitted, shared, traded and sold. Data requires data centers. Data centers require energy. The United States is home to approximately 40% of the world's data centers. The U.S. is set to lead the world in digital infrastructure advancement and has an opportunity to lead on energy for a very long time.

Data centers consume vast amounts of electricity due to their computational and cooling requirements. According to the United States Department of Energy, data centers consume “10 to 50 times the energy per floor space of a typical commercial office building.” Lawrence Berkeley National Laboratory issued a report in December 2024 stating that U.S. data center energy use reached 176 TWh by 2023, “representing 4.4% of total U.S. electricity consumption.” This percentage will increase significantly with near-term investment into high performance computing (HPC) and artificial intelligence (AI). The markets recognize the need for digital infrastructure build-out and, developers, engineers, investors and asset owners are responding at an incredible clip.

However, the energy demands required to meet this digital load growth pose significant challenges to the U.S. power grid. Reliability and cost-efficiency have been, and will continue to be, two non-negotiable priorities of the legal, regulatory and quasi-regulatory regime overlaying the U.S. power grid.

Maintaining and improving reliability requires physical solutions. The grid must be perfectly balanced, with neither too little nor too much electricity at any given time. Specifically, new-build, physical power generation and transmission (a topic worthy of another article) projects must be built. To be sure, innovative financial products such as virtual power purchase agreements (VPPAs), hedges, environmental attributes, and other offtake strategies have been, and will continue to be, critical to growing the U.S. renewable energy markets and facilitating the energy transition, but the U.S. electrical grid needs to generate and move significantly more electrons to support the digital infrastructure transformation.

But there is now a third permanent priority: sustainability. New power generation over the next decade will include a mix of solar (large and small scale, offsite and onsite), wind and natural gas resources, with existing nuclear power, hydro, biomass, and geothermal remaining important in their respective regions.

Solar, in particular, will grow as a percentage of U.S grid generation. The Solar Energy Industries Association (SEIA) reported that solar added 50 gigawatts of new capacity to the U.S. grid in 2024, “the largest single year of new capacity added to the grid by an energy technology in over two decades.” Solar is leading, as it can be flexibly sized and sited.

Under-utilized technology such as carbon capture, utilization and storage (CCUS) will become more prominent. Hydrogen may be a potential game-changer in the medium-to-long-term. Further, a nuclear power renaissance (conventional and small modular reactor (SMR) technologies) appears to be real, with recent commitments from some of the largest companies in the world, led by technology companies. Nuclear is poised to be a part of a “net-zero” future in the United States, also in the medium-to-long term.

The transition from fossil fuels to zero carbon renewable energy is well on its way – this is undeniable – and will continue, regardless of U.S. political and market cycles. Along with reliability and cost efficiency, sustainability has become a permanent third leg of the U.S. power grid stool.

Sustainability is now non-negotiable. Corporate renewable and low carbon energy procurement is strong. State renewable portfolio standards (RPS) and clean energy standards (CES) have established aggressive goals. Domestic manufacturing of the equipment deployed in the U.S. is growing meaningfully and in politically diverse regions of the country. Solar, wind and batteries are increasing less expensive. But, perhaps more importantly, the grid needs as much renewable and low carbon power generation as possible - not in lieu of gas generation, but as an increasingly growing pairing with gas and other technologies. This is not an “R” or “D” issue (as we say in Washington), and it's not an “either, or” issue, it's good business and a physical necessity.

As a result, solar, wind and battery storage deployment, in particular, will continue to accelerate in the U.S. These clean technologies will inevitably become more efficient as the buildout in the U.S. increases, investments continue and technology advances.

At some point in the future (it won’t be in the 2020s, it could be in the 2030s, but, more realistically, in the 2040s), the U.S. will have achieved the remarkable – a truly modern (if not entirely overhauled) grid dependent largely on a mix of zero and low carbon power generation and storage technology. And when this happens, it will have been due in large part to the clean technology deployment and advances over the next 10 to 15 years resulting from the current digital infrastructure boom.

---

Hans Dyke and Gabbie Hindera are lawyers at Bracewell. Dyke's experience includes transactions in the electric power and oil and gas midstream space, as well as transactions involving energy intensive industries such as data storage. Hindera focuses on mergers and acquisitions, joint ventures, and public and private capital market offerings.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

new findings

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.