OCI broke ground on the project in 2022. Photo via oci-global.com

Woodside Energy has announced its acquiring a Beaumont, Texas, clean ammonia project that's slated to deliver its first ammonia by 2025 and lower carbon ammonia by 2026.

The agreement is for Woodside to acquire 100 percent of OCI Clean Ammonia Holding and its lower carbon ammonia project in Beaumont in an all-cash deal of approximately $2.35 billion. According to Woodside CEO Meg O’Neill, the acquisition positions Woodside as an early mover in clean ammonia within the energy transition.

“This transaction positions Woodside in the growing lower carbon ammonia market," O’Neill says in a news release. "The potential applications for lower carbon ammonia are in power generation, marine fuels and as an industrial feedstock, as it displaces higher-emitting fuels.

“Global ammonia demand is forecast to double by 2050, with lower carbon ammonia making up nearly two-thirds of total demand," she continues. “This Project exceeds our capital allocation framework targets for new energy projects. Both phases are expected to achieve an internal rate of return above 10 percent and payback of less than 10 years."

OCI broke ground on the project in 2022. It's reportedly the world’s first ammonia plant paired with auto thermal reforming with over 95 percent carbon dioxide capture.

Phase 1 of the project will have a capacity of 1.1 million tonnes per annum and is currently under construction. The first ammonia production will be derived from natural gas and is slated for 2025, with lower carbon ammonia production — derived from natural gas paired with carbon sequestration — is expected in in 2026 following commencement of CCS operations

According to the release, Phase 2 will have the capacity to abate 3.2 million tonnes per annum CO2-e, "or over 60 percent of our Scope 3 abatement target,” O’Neill explains.

Linde will source the nitrogen and lower carbon hydrogen feedstock from its feedstock facility, which is currently under construction with a targeted completion in early 2026. In the meantime, early supply of feedstock for the project will come from various suppliers including Linde. Per the release, CCS services will be provided to Linde by ExxonMobil and are expected to be available in 2026.

The rig stands 225 feet tall and extends 8,000 feet below the subsurface. Photo via exxonmobil.com

ExxonMobil breaks ground on Texas carbon dioxide storage project

digging in

ExxonMobil announced this month that it has officially broken ground on a groundbreaking carbon dioxide storage site.

According to a release from the company, a new rig is currently being used to gather information about an underground site in Southeast Texas. The rig stands 225 feet tall, but more importantly extends 8,000 feet below the subsurface to investigate if the site is a safe place to store carbon underground.

“Everyone’s excited about this appraisal well because we’re literally breaking ground on a new chapter of our work to help reduce industrial emissions,” Joe Colletti, who oversees carbon capture and storage development along the Gulf Coast for Exxon, says in a statement.

Exxon plans to move the rig to other sites in the Gulf Coast in the future for clients Nucor Corp., CF Industries and Linde.

In the last year, Exxon has made agreements with these regional companies to store carbon captured from their operations.

  • Exxon agreed to transport and permanently store up to 2.2 million metric tons of carbon dioxide each year from Linde’s hydrogen production facility in Beaumont, Texas when it launches in 2025.
  • Exxon agreed to store up to 2 million metric tons per year of CO2 captured from CF Industries’ ammonia plant in Donaldsonville, Louisiana, starting in 2025.
  • Exxon agreed to capture, transport and store up to 800,000 metric tons per year of CO2 from Nucor’s direct reduced iron manufacturing site in Convent, Louisiana starting in 2026.

Together, the three agreements represent a total of 5 million metric tons per year that Exxon plans to transport and store for third-party customers.

“Our agreement with Nucor is the latest example of how we’re delivering on our mission to help accelerate the world's path to net zero and build a compelling new business,” Dan Ammann, president of ExxonMobil Low Carbon Solutions, says in a statement over the summer. “Momentum is building as customers recognize our ability to solve emission challenges at scale.”

In addition to the carbon storage agreements, the energy giant also completed the acquisition of Denbury Inc. this month in an all-stock transaction valued at $4.9 billion. The deal adds more than 1,300 miles, including nearly 925 miles of CO2 pipelines in Louisiana, Texas and Mississippi to Exxon's CO2 pipeline network.

The deal was first announced this summer.

The Houston energy transition ecosystem is primed for collaborative partnerships – but here's what to keep in mind. Photo courtesy of Digital Wildcatters

Addressing the need for collaboration in Houston's energy transition

Editor's note

When it comes to advancing the energy transition in Houston and beyond, experts seem to agree that collaborations between all major stakeholders is extremely important.

In fact, it was so important that it was the first panel of the second day of FUZE, an energy-focused conference put on by Digital Wildcatters. EnergyCapital HTX and InnovationMap were the event's media partners, and I, as editor of these news outlets, moderated the panel about collaborations.

I wanted to take a second to reflect on the conversation I had with the panelists earlier this week, as I believe their input and expertise — from corporate and nonprofit to startup and investing — was extremely valuable to the greater energy transition community.

Here were my three takeaways from the panel, titled "Collaborative Partnerships: Leveraging synergy in the energy sector."

Early-stage tech startups need bridges to cross their valleys.

The energy transition is a long game — and an expensive one, as Jane Stricker, executive director of the Houston Energy Transition Initiative, explains on the panel. And, just like most startups, the path to commercialization and profitability is long — and definitely not promised.

"When you look at innovation and startups, the multiple valleys of death a startup will go through on their journey, we have to find more ways to bridge those valleys and get more technology to get up that mountain and to a place where it can be scaled," she says.

She explains that corporations aren't always good at innovating, but they are impactful about rolling out de-risked technology at a global scale. But the technology has to get to that point first, so it takes a much earlier intervention for corporates — or another entity, like incubators and accelerators — to help in that developmental process.

"In Houston we have the potential to build out that ecosystem — we already have a lot of pieces in place, so it's about connecting the dots," Stricker says. "It's only by all of the different parts of the ecosystem understanding what each other does and what unique role they play in the process that we can really leverage the strengths of each of them to help create those partnerships and opportunities."

As Amy Henry, CEO of EUNIKE Ventures explains, corporates have their own challenges.

"Energy companies themselves have their own valley of death, and from where they are sitting, that's why they need to collaborate," she says on the panel. "And now we're talking about an unprecedented rate of getting technology commercialized."

EUNIKE works as a go between for corporates — almost as an expansion for them, Henry explains, and they are facing a challenging time too.

"Energy companies are just not early adopters of technology," she says. "But they are also going through their own transformation. At the same time, you've had this huge knowledge leakage in terms of all the workforce reduction."

Startups and corporates speak a different language.

Moji Karimi has had several partnerships with corporations with his biotech startup Cemvita Factory, including a recent offtake agreement with United. For Karimi, it's about learning about your corporate partner.

"In partnerships, especially for startups, you need to understand what is the language of love for the company at time," he says on the panel. "Is it growth, is it perception and PR, is it deployment of capital, or is there a specific bottleneck that we can help remove."

For HETI, Striker says they hope to act as a translator between the two parties.

"How do we enable more connectivity between the companies that have a technology that may be of interest to the larger companies looking for a solution?" Striker explains of HETI's mission. "And how do we make sure industry is communicating opening and broadly?"

Now is the time for action.

For Karimi, the solution is simple: More action is needed.

"Generally, we just need to talk less and do more," he says of what he wants to see from corporates, adding that more checks need to be written.

Based on his own experience, Karimi says some corporates are better to work with than others. He says he prefers working with the companies that don't try to mix in their startup pilots with the "bread and butter" of the business.

"Everyone has so much on their plate," he says, giving the example of Oxy Low Carbon Ventures being an offshoot of Oxy's main business.

Karimi says corporates should think of their startup pilots as an opportunity to try something new and different — something they'd never be able to test internally.

David Maher, business development director of Americas at Linde, says now that there's been regulatory framework, Linde knows what to invest in. The company has a particular interest in hydrogen.

"Another big piece of it is scale," Maher says of what Linde thinks about when considering innovative partnerships. "What's great about Houston is we have density and scale already."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University spinout lands $500K NSF grant to boost chip sustainability

cooler computing

HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.

The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.

The technology has major implications for the future of computing with AI sustainably.

“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.

HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.

The HEXASpec team won the Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge in 2024. More recently, it also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track, taking home $25,000.

"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.

---

This article originally ran on InnovationMap.

Rice research team's study keeps CO2-to-fuel devices running 50 times longer

new findings

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.