researching for the future

Houston scientists discover breakthrough process for lithium-ion battery recycling

The Rice team's process is up to 10 times more effective than existing lithium-ion battery recycling. Photo by Gustavo Raskosky/Rice University

With the rise of electric vehicles, every ounce of lithium in lithium-ion batteries is precious. A team of scientists from Rice University has figured out a way to retrieve as much as 50 percent of the material in used battery cathodes in as little as 30 seconds.

Researchers at Rice University’s Nanomaterials Laboratory led by Department of Materials Science and NanoEngineering Chair Pulickel Ajayan released the findings a new study published in Advanced Functional Materials. Their work shows that the process overcomes a “bottleneck” in lithium-ion battery recycling technology. The researchers described a “rapid, efficient and environmentally friendly method for selective lithium recovery using microwave radiation and a readily biodegradable solvent,” according to a news release.

Past recycling methods have involved harsh acids, and alternative eco-friendly solvents like deep eutectic solvents (DESs) at times have not been as efficient and economically viable. Current recycling methods recover less than 5 percent of lithium, which is due to contamination and loss during the process.

In order to leach other metals like cobalt or nickel, both the choline chloride and the ethylene glycol have to be involved in the process, according to the researchers at Rice. The researchers submerged the battery waste material in the solvent and blasted it with microwave radiation since they knew that of the two substances only choline chloride is good at absorbing microwaves.

Microwave-assisted heating can achieve similar efficiencies like traditional oil bath heating almost 100 times faster. Using the microwave-based process, Rice found that it took 15 minutes to leach 87 percent of the lithium, which differs from the 12 hours needed to obtain the same recovery rate via oil bath heating.

“This method not only enhances the recovery rate but also minimizes environmental impact, which makes it a promising step toward deploying DES-based recycling systems at scale for selective metal recovery,” Ajayan says in the release.

Due to rise in EV production, the lithium-ion battery global market is expected to grow by over 23 percent in the next eight years, and was previously valued at over $65 billion in 2023.

“We’ve seen a colossal growth in LIB use in recent years, which inevitably raises concerns as to the availability of critical metals like lithium, cobalt and nickel that are used in the cathodes,” the study's co-author, Sohini Bhattacharyya, adds. “It’s therefore really important to recycle spent LIBs to recover these metals.”

Trending News

A View From HETI

Cemvita has named a new leader in Brazil. Photo via cemvita.com

Houston industrial biotech company Cemvita has announced two strategic moves to advance its operations in Brazil.

The company, which utilizes synthetic biology to transform carbon emissions into valuable bio-based chemicals, acquired a complementary technology that expands its IP and execution of scale-up capacity, according to a news release. The acquisition will bring additional synthetic biology toolsets that Cemvita believes will assist with compressing and commercializing timelines.

The company also appointed Luciano Zamberlan as vice president of operations based in Brazil.

Zamberlan will lead operational execution, site readiness and early commissioning activities in Brazil. He brings more than 20 years of experience in biotechnology to the role. He recently served as director of engineering at Raízen, Brazil’s largest ethanol producer and the world’s largest producer of sugarcane ethanol. At Raízen, he coordinated the implementation of four greenfield plants and oversaw operational teams and process optimization for second-generation ethanol (E2G) and biogas.

“I am very pleased to join Cemvita, a company at the forefront of transforming waste into valuable, sustainable resources,” Zamberlan said in the release. “My expertise in scaling-up innovation, coupled with my experience in structuring and commissioning greenfield industrial operations, is perfectly aligned with Cemvita's mission and I'm eager to bring my energy and drive to accelerate Cemvita's industrial performance and contribute for a circular future.”

Cemvita expanded to Brazil in January to help capitalize on the country’s progressive regulatory framework, including Brazil’s Fuel of the Future Law, enacted in 2024. The law mandates an increase in the biodiesel content of diesel fuel, starting from 15 percent in March and increasing to 20 percent by 2030. It also requires the adoption of Sustainable Aviation Fuel (SAF) and for domestic flights to reduce greenhouse gas emissions by 1 percent starting in 2027, growing to 10 percent reduction by 2037.

“These steps enable us to augment Brazil’s longstanding bioindustrial ecosystem with next-generation capabilities, reducing early commercialization risk and expanding optionality for future product platforms,” Marcio Silva, CTO of Cemvita, said in the news release. “Together, they strengthen our ability to move from proof-of-concept to industrial reality.”

Trending News