seeing green

Houston university's compost program reaches major milestone

Rice University, which works with Houston-based Moonshot Compost, reported a milestone achievement this month. Photo via Getty Images

Rice University and its campus community have officially diverted over 1 million pounds of food waste from landfills.

The university, which works with Houston-based Moonshot Compost, reported the milestone achievement this month. The program was originally launched in November 2020.

“The genesis of the current composting program was a partnership between Housing and Dining, the Office of Sustainability and an undergraduate student named Ashley Fitzpatrick,” says Richard Johnson, senior executive director for sustainability at Rice, in a news release.

“We spent quite a bit of time developing options for food waste composting at Rice with those efforts really ramping up in 2019. After a pilot project, further reflection and an interruption due to the pandemic, we found Moonshot Compost, and they proved to be the partner we needed.”

Fitzpatrick, the student who started it all went on to graduate and now works for Moonshot Compost. She did leave a legacy of student involvement in the program, and Isabelle Chang now serves as an undergraduate student intern in the Office of Sustainability. The role includes liaising with students and other major players on campus who have feedback for the program.

Rice previously had a composting program, but it never reached the same level of scale, per the news release.

“Many years ago — from the late 1990s to about 2007 — we had an on-campus composting device called the Earth Tub that provided food waste composting at one campus kitchen,” Johnson said. “However, the device failed, and frankly, the process of operating the device, getting the food waste into the device and maintaining it all proved onerous. Interest in composting remained after we decommissioned the Earth Tub, and for years we looked for alternatives [before finding Moonshot Compost].”

Launched in July 2020 by Chris Wood and Joe Villa, Moonshot operates with a team of drivers utilizing its data platform to quantify the environmental benefits of composting. The duo went on to team up with energy industry veteran Rene Ramirez to harness their compost into clean hydrogen power.

Last fall, Moonshot Hydrogen signed a memorandum of understanding with the Purdue Innovates Office of Technology Commercialization. The agreement includes facilitating the first operating commercial pilot that biologically turns food waste into hydrogen.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News