waste to power

Houston startup launches clean energy business to turn compost into hydrogen

Moonshot Compost has announced its plans to create green hydrogen at scale. Photo via Getty Images

You may already know Moonshot Compost, a Houston company devoted to collecting food waste all over Texas. Now, meet Moonshot Hydrogen.

Founders and brothers-in-law Chris Wood and Joe Villa have joined forces with energy industry veteran Rene Ramirez to harness their compost into clean hydrogen power.

Earlier this month, the new branch of the existing company signed a memorandum of understanding with the Purdue Innovates Office of Technology Commercialization. The agreement comes close to a year after Ramirez first began working with Purdue University Northwest professors, Robert Kramer and Libbie Pelter, and Purdue University’s professor, John Patterson. The result is the first operating commercial pilot that biologically turns food waste into hydrogen.

This revelation comes just days after the Biden-Harris administration announced that it had set aside $7 billion to H2Hubs, a collection of seven regional hydrogen power stations, including one in the Houston area.

“We love the timing. There’s just a lot of interest right now,” Wood tells EnergyCapital in a video call with Villa and Ramirez. “It's been fun to watch Rene's long relationship with Purdue come to fruition on behalf of that hydrogen at the same time that the DoD is moving forward with their announcement on the hydrogen hubs.”

Wood and Villa founded Moonshot Compost three years ago.

“The thought was, 'waste is so valuable, and there's so much of it in the trash.' So we wanted to focus on, ‘Let's get our hands on as much food waste as possible,’ and always be focused on doing the best thing with our food waste,” Wood says.

Initially, that meant making compost, which saved the waste from a landfill and produced high-quality, nutrient-rich soil. Customers include both private homes and commercial accounts. Those include heavy hitters like Rice University, Conoco Phillips and Texas Children’s Hospital, as well as beloved restaurants ranging from Bludorn to Tacodeli. And that’s just in Houston. The company now collects from businesses in Austin, Dallas and Waco, too.

That extended footprint will be important to Moonshot Hydrogen.

“Our big dream is ideally that we have one of these hydrogen facilities in almost every city that we can think of. Your city has that ability to charge up or refuel the cars with hydrogen at-location and not have to worry about going 300 miles away,” says Ramirez.

Filling up your car with zero-emission hydrogen made from compost? It could be a reality sooner than you think. According to Wood, Moonshot is already in the preliminary stages of discussions with a facility to pilot just such a program.

“We’ve been thrilled with how receptive people are. There does seem to be a general acknowledgment that this would fit well with Houston’s desire to be the energy transition capital of the world,” he says.

Their patent-protected technology assures that Moonshot is the only company with this novel solution to food waste. Most exciting is the fact that the institutions with which Moonshot already partners could be on the ground floor of being at least partially powered by their own discarded scraps.

“Everyone loves the circularity aspect of it,” says Ramirez. And with a potential launch as soon as next March, it’s one step closer to a reality for the Energy Transition Capital.

Trending News

A View From HETI

Zeta Energy's batteries are targeted to power Stellantis electric vehicles by 2030. Image via Zeta Energy

Houston-based Zeta Energy Corp. has teamed up with an automaker to develop new battery technology.

Zeta Energy and Stellantis N.V. announced a joint development deal to advance battery cell technology for electric vehicle applications that will develop lithium-sulfur EV batteries with gravimetric energy density that can achieve a volumetric energy density comparable to today’s lithium-ion technology. The batteries are targeted to power Stellantis electric vehicles by 2030.

“The combination of Zeta Energy’s lithium-sulfur battery technology with Stellantis’ unrivaled expertise in innovation, global manufacturing and distribution can dramatically improve the performance and cost profile of electric vehicles while increasing the supply chain resiliency for batteries and EVs,” Tom Pilette, CEO of Zeta Energy, says in a news release.

The batteries will be produced using waste materials and methane that boasts lower CO2 emissions than any existing battery technology. Zeta Energy battery technology is intended to be manufacturable within existing gigafactory technology and would leverage an entire domestic supply chain in Europe or North America.

The technology can lead to a significantly lighter battery pack with the same usable energy as contemporary lithium-ion batteries. The companies believe this will enable greater range, improved handling and enhanced performance. The technology has the potential to improve fast-charging speed by up to 50 percent, which can make EV ownership easier.

Lithium-sulfur batteries are expected to cost less than half the price per kilowatt of current lithium-ion batteries according to a news release. Zeta has more than 60 patents on its proprietary lithium-sulfur anode and cathode technologies.

Lighter and more compact EV batteries have become an important design goal for vehicle designers and manufacturers. This objective is similar to what General Motors is doing with prismatic cell technology with LG Energy Solution.

“Our collaboration with Zeta Energy is another step in helping advance our electrification strategy as we work to deliver clean, safe and affordable vehicles,” Ned Curic, Stellantis chief engineering and technology officer, says in the release. “Groundbreaking battery technologies like lithium-sulfur can support Stellantis’ commitment to carbon neutrality by 2038 while ensuring our customers enjoy optimal range, performance and affordability.”

Last year, Zeta Energy announced that it was selected to receive $4 million in federal funding for the development of efficient electric vehicle batteries from the U.S. Department of Energy's ARPA-E Electric Vehicles for American Low-Carbon Living, or EVs4ALL, program.

Trending News