The Center for Electromechanics at The University of Texas, Frontier Energy, Inc., and GTI Energy celebrated the grand opening of a hydrogen research and demonstration facility in Austin. Photo via utexas.edu

A Texas school has cut the ribbon on a new hydrogen-focused research facility that will play a role in a statewide, Department of Energy-funded energy transition initiative.

The Center for Electromechanics at The University of Texas, Frontier Energy, Inc., and GTI Energy celebrated the grand opening of a hydrogen research and demonstration facility in Austin as part of the “Demonstration and Framework for H2@Scale in Texas and Beyond” project, which is supported by the DOE's Hydrogen and Fuel Cell Technologies Office.

The hydrogen proto-hub is first-of-its-kind and part of Texas-wide initiative for a cleaner hydrogen economy and will feature contributions from organizations throughout the state. The facility will generate zero-carbon hydrogen by using water electrolysis powered by solar and wind energy, and steam methane reformation of renewable natural gas from a Texas landfill.

The hydrogen will be used to power a stationary fuel cell for power for the Texas Advanced Computing Center, and it will also supply zero-emission fuel to cell drones and a fleet of Toyota Mirai fuel cell electric vehicles. This method will mark the first time that multiple renewable hydrogen supplies and uses have been networked at one location to show an economical hydrogen ecosystem that is scalable.

“The H2@Scale in Texas project builds on nearly two decades of UT leadership in hydrogen research and development” Michael Lewis, Research Scientist, UT Austin Center for Electromechanics, say in a news release. “With this facility, we aim to provide the educated workforce and the engineering data needed for success. Beyond the current project, the hydrogen research facility is well-positioned for growth and impact in the emerging clean hydrogen industry.”

Over 20 sponsors and industry stakeholders are involved and include Houston-based partners in Center for Houston’s Future and Rice University Baker Institute for Public Policy. Industry heavyweights like Chevron, Toyota, ConocoPhillips, and the Texas Commission on Environmental Quality are also part of the effort.

Texas hydrogen infrastructure and wind and solar resources position the state for clean hydrogen production, as evident in the recently released study, “A Framework for Hydrogen in Texas.” The study was part of a larger effort that started in 2020 with the H2@Scale project, which aims to develop clearer paths to renewable hydrogen as a “clean and cost-effective fuel” according to a news release. The facility will serve as an academic research center, and a model for future large-scale hydrogen deployments.

Participants in the DOE-funded HyVelocity Gulf Coast Hydrogen Hub will aim to gain insights from the H2@Scale project at UT Austin. The project will build towards a development of a comprehensive hydrogen network across the region. HyVelocity is a hub that includes AES Corporation, Air Liquide, Chevron, ExxonMobil, Mitsubishi Power Americas, Orsted, and Sempra Infrastructure. The GTI Energy administered HyVelocity involves The University of Texas at Austin, the Center for Houston’s Future, and Houston Advanced Research Center.

“H2@Scale isn't just about producing low-carbon energy, it's about creating clean energy growth opportunities for communities throughout Texas and the nation,” Adam Walburger, president of Frontier Energy, says in a news release. “By harnessing renewable energy resources to create zero-carbon hydrogen, we can power homes, businesses, transportation, and agriculture – all while creating jobs and reducing emissions.”

A new program at Rice University will educate recent graduates or returning learners on key opportunities within energy transition. Photo via Rice

Rice University introduces new program for energy transition, sustainability

future of energy

A Houston university has committed to preparing the workforce for the future of energy with its newest program.

Rice University announced plans to launch the Master of Energy Transition and Sustainability, or METS, in the fall. The 31 credit-hour program, which is a joint initiative between Rice's George R. Brown School of Engineering and the Wiess School of Natural Sciences, "will train graduates to face emergent challenges in the energy sector and drive innovation in sustainability across a wide range of domains from technology to economics and policy," according to the university.

“We believe that METS graduates will emerge as leaders and innovators in the energy industry, equipped with the skills and knowledge to drive sustainable solutions,” Rice President Reginald DesRoches says in the release. “Together we can shape a brighter, more resilient and cleaner future for generations to come.”

Some of the focus points of the program will be geothermal, hydrogen, and critical minerals recovery. Additionally, there will be education around new technologies within traditional oil and gas industry, like carbon capture and sequestration and subsurface storage.

“We are excited to welcome the inaugural cohort of METS students in the fall of 2024,” Thomas Killian, dean of the Wiess School of Natural Sciences and a professor of physics and astronomy, says in the release. “This program offers a unique opportunity for students to delve into cutting-edge research, tackle real-world challenges and make a meaningful impact on the future of energy.”

The new initiative is just the latest stage in Rice's relationship with the energy industry.

“This is an important initiative for Rice that is very much aligned with the university’s long-term commitment to tackle urgent generational challenges, not only in terms of research — we are well positioned to make significant contributions on that front — but also in terms of education,” says Michael Wong, the Tina and Sunit Patel Professor in Molecular Nanotechnology, chair and professor of chemical and biomolecular engineering and a professor of chemistry, materials science and nanotechnology and of civil and environmental engineering. “We want prospective students to know that they can confidently learn the concepts and tools they need to thrive as sustainability and energy transition experts and thought leaders.”

The project is expected to be completed in the second quarter of this year. Graphic courtesy of HNO

3 companies collaborate to build green hydrogen facility in Houston

team work

Three corporations have teamed up to deliver a first-of-its-kind hydrogen production project to be located in the Houston area.

California-based HNO International Inc. has teamed up with Colorado-based Element One Energy and Houston-based Pneumatic and Hydraulic Co. to develop a hydrogen production facility that will produce 500 kilograms of green hydrogen a day.

"This collaboration represents a major milestone in our commitment to sustainable energy solutions," Donald Owens, chairman at HNO International, says in a news release. "The development of the 500kg per day green hydrogen production facility in Houston is a testament to our dedication to advancing sustainable hydrogen infrastructure.

"This facility is just the beginning, as we have plans for additional installations in 2024, 2025, and beyond, further solidifying our position as leaders in the hydrogen energy infrastructure sector," he continues.

The facility will install HNO International's Scalable Hydrogen Energy Platform, or SHEP, a hydrogen energy system that's designed to produce, store, and dispense green hydrogen from water using a 1.25 megawatt electrolyzer. SHEP is scalable, modular, and compact, requiring less than 3,000 square feet of space.

For 60 years, Pneumatic and Hydraulic Co. has worked in the compressed gas industry with its hydrogen division Total Hydrogen Solutions, serving a range of industries, including notable aerospace clients like SpaceX, Blue Origin, NASA,

Element One Energy designs and manufactures electrolyzers and solid-state hydrogen storage systems with over 20 years of engineering experience with cryogenic storage and high pressures.

Honeywell’s European launch follows a Dutch test of the smart gas meter, which the company touts as the world’s first commercially available hydrogen-ready gas meter. Photo via honeywell.com

Honeywell plans to launch world's first of hydrogen-ready gas meter

smart tech

A Houston-based unit of industrial conglomerate Honeywell has unveiled a gas meter capable of measuring both hydrogen and natural gas.

Honeywell’s European launch follows a Dutch test of the EI5 smart gas meter, which the company touts as the world’s first commercially available hydrogen-ready gas meter.

“Honeywell’s hydrogen-capable meters are key to facilitating a seamless transition to hydrogen energy across European utility networks,” Kinnera Angadi, chief technology officer of smart energy and thermal solutions at Honeywell, says in a November 28 news release. “We’re enhancing operational efficiency with meters that are ready for the future, helping our customers stay ahead in a market that’s swiftly transitioning toward greener energy solutions.”

Among other products, Honeywell’s Houston-based Process Solutions unit supplies connected utility and metering technology like the new EI5 gas meter. In the Netherlands, Honeywell’s meters will be installed at residences by Dutch energy company Enexis Group.

A 2022 report from the Hydrogen Council indicates that hydrogen costs are expected to fall by 2030, making it competitive with other low-carbon option. This insight helped lead Enexis Group to commit to converting its main gas lines to hydrogen within the next three years.

“The transition to clean energy is as necessary as it is complex,” says Ruud Busscher, program manager for energy transit and Hydrogen at Enexis. “This project aims to challenge the way we operate by using an alternative to natural gas. We are finding out how the existing grid will be influenced by hydrogen and what new paths can be taken for a sustainable future.”

Researchers at the University of Houston are proposing that supplying hydrogen for transportation in the greater Houston area could also be profitable. Photo via UH.edu

Houston research shows how much hydrogen-powered vehicles would cost at the pump

hi, hydrogen

It's generally understood that transitioning away from gas-powered vehicles will help reduce the 230 million metric tons of carbon dioxide gas released each year by the transportation sector in Texas.

Now, researchers at the University of Houston are proposing that supplying hydrogen for transportation in the greater Houston area could also be profitable.

The research team has done the math. In a white paper, "Competitive Pricing of Hydrogen as an Economic Alternative to Gasoline and Diesel for the Houston Transportation Sector," the team compared three hydrogen generation processes—steam methane reforming (SMR), SMR with carbon capture (SMRCC), and electrolysis using grid electricity and water—and provided cost estimates and delivery models for each.

The team found that SMRCC hydrogen can be supplied at about $6.10 per kilogram of hydrogen at the pump, which they say is competitive and shows promise for hydrogen-powered fuel cell electric vehicles (FCEVs).

FCEVs refuel with hydrogen in five minutes and produce zero emissions, according to UH.

"This research underscores the transformative potential of hydrogen in the transportation sector,” Alexander Economides, a co-author on the study, UH alumnus and CEO Kiribex Inc., said in the statement. “Our findings indicate that hydrogen can be a cost-competitive and environmentally responsible choice for consumers, businesses, and policymakers in the greater Houston area."

Economides was joined on the paper by co-authors Christine Ehlig-Economides, professor and Hugh Roy and Lillie Cranz Cullen Distinguished University Chair at UH, and Paulo Liu, research associate in the Department of Petroleum Engineering at UH.

Additionally, the team says Houston is an ideal leader for this transition.

“(Houston) has more than sufficient water and commercial filtering systems to support hydrogen generation,” the study states. “Add to that the existing natural gas pipeline infrastructure, which makes hydrogen production and supply more cost effective and makes Houston ideal for transitioning from traditional vehicles to hydrogen-powered ones.”

The study also discusses tax incentives, consumer preferences, grid generation costs and many other details.

Moonshot Compost has announced its plans to create green hydrogen at scale. Photo via Getty Images

Houston startup launches clean energy business to turn compost into hydrogen

waste to power

You may already know Moonshot Compost, a Houston company devoted to collecting food waste all over Texas. Now, meet Moonshot Hydrogen.

Founders and brothers-in-law Chris Wood and Joe Villa have joined forces with energy industry veteran Rene Ramirez to harness their compost into clean hydrogen power.

Earlier this month, the new branch of the existing company signed a memorandum of understanding with the Purdue Innovates Office of Technology Commercialization. The agreement comes close to a year after Ramirez first began working with Purdue University Northwest professors, Robert Kramer and Libbie Pelter, and Purdue University’s professor, John Patterson. The result is the first operating commercial pilot that biologically turns food waste into hydrogen.

This revelation comes just days after the Biden-Harris administration announced that it had set aside $7 billion to H2Hubs, a collection of seven regional hydrogen power stations, including one in the Houston area.

“We love the timing. There’s just a lot of interest right now,” Wood tells EnergyCapital in a video call with Villa and Ramirez. “It's been fun to watch Rene's long relationship with Purdue come to fruition on behalf of that hydrogen at the same time that the DoD is moving forward with their announcement on the hydrogen hubs.”

Wood and Villa founded Moonshot Compost three years ago.

“The thought was, 'waste is so valuable, and there's so much of it in the trash.' So we wanted to focus on, ‘Let's get our hands on as much food waste as possible,’ and always be focused on doing the best thing with our food waste,” Wood says.

Initially, that meant making compost, which saved the waste from a landfill and produced high-quality, nutrient-rich soil. Customers include both private homes and commercial accounts. Those include heavy hitters like Rice University, Conoco Phillips and Texas Children’s Hospital, as well as beloved restaurants ranging from Bludorn to Tacodeli. And that’s just in Houston. The company now collects from businesses in Austin, Dallas and Waco, too.

That extended footprint will be important to Moonshot Hydrogen.

“Our big dream is ideally that we have one of these hydrogen facilities in almost every city that we can think of. Your city has that ability to charge up or refuel the cars with hydrogen at-location and not have to worry about going 300 miles away,” says Ramirez.

Filling up your car with zero-emission hydrogen made from compost? It could be a reality sooner than you think. According to Wood, Moonshot is already in the preliminary stages of discussions with a facility to pilot just such a program.

“We’ve been thrilled with how receptive people are. There does seem to be a general acknowledgment that this would fit well with Houston’s desire to be the energy transition capital of the world,” he says.

Their patent-protected technology assures that Moonshot is the only company with this novel solution to food waste. Most exciting is the fact that the institutions with which Moonshot already partners could be on the ground floor of being at least partially powered by their own discarded scraps.

“Everyone loves the circularity aspect of it,” says Ramirez. And with a potential launch as soon as next March, it’s one step closer to a reality for the Energy Transition Capital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Energy industry veteran named CEO of Houston hydrogen co.

GOOD AS GOLD

Cleantech startup Gold H2, a spinout of Houston-based energy biotech company Cemvita, has named oil and gas industry veteran Prabhdeep Singh Sekhon as its CEO.

Sekhon previously held roles at companies such as NextEra Energy Resources and Hess. Most recently, he was a leader on NextEra’s strategy and business development team.

Gold H2 uses microbes to convert oil and gas in old, uneconomical wells into clean hydrogen. The approach to generating clean hydrogen is part of a multibillion-dollar market.

Gold H2 spun out of Cemvita last year with Moji Karimi, co-founder of Cemvita, leading the transition. Gold H2 spun out after successfully piloting its microbial hydrogen technology, producing hydrogen below 80 cents per kilogram.

The Gold H2 venture had been a business unit within Cemvita.

“I was drawn to Gold H2 because of its innovative mission to support the U.S. economy in this historical energy transition,” Sekhon says in a news release. “Over the last few years, my team [at NextEra] was heavily focused on the commercialization of clean hydrogen. When I came across Gold H2, it was clear that it was superior to each of its counterparts in both cost and [carbon intensity].”

Gold H2 explains that oil and gas companies have wrestled for decades with what to do with exhausted oil fields. With Gold H2’s first-of-its-kind biotechnology, these companies can find productive uses for oil wells by producing clean hydrogen at a low cost, the startup says.

“There is so much opportunity ahead of Gold H2 as the first company to use microbes in the subsurface to create a clean energy source,” Sekhon says. “Driving this dynamic industry change to empower clean hydrogen fuel production will be extremely rewarding.”

–––

This article originally ran on InnovationMap.

Q&A: CEO of bp-acquired RNG producer on energy sustainability, stability

the view from heti

bp’s Archaea Energy is the largest renewable natural gas (RNG) producer in the U.S., with an industry leading RNG platform and expertise in developing, constructing and operating RNG facilities to capture waste emissions and convert them into low carbon fuel.

Archaea partners with landfill owners, farmers and other facilities to help them transform their feedstock sources into RNG and convert these facilities into renewable energy centers.

Starlee Sykes, Archaea Energy’s CEO, shared more about bp’s acquisition of the company and their vision for the future.

HETI: bp completed its acquisition of Archaea in December 2022. What is the significance of this acquisition for bp, and how does it bolster Archaea’s mission to create sustainability and stability for future generations?  

Starlee Sykes: The acquisition was an important move to accelerate and grow our plans for bp’s bioenergy transition growth engine, one of five strategic transition growth engines. Archaea will not only play a pivotal role in bp’s transition and ambition to reach net zero by 2050 or sooner but is a key part of bp’s plan to increase biogas supply volumes.

HETI: Tell us more about how renewable natural gas is used and why it’s an important component of the energy transition?  

SS: Renewable natural gas (RNG) is a type of biogas generated by decomposing organic material at landfill sites, anaerobic digesters and other waste facilities – and demand for it is growing. Our facilities convert waste emissions into renewable natural gas. RNG is a lower carbon fuel, which according to the EPA can help reduce emissions, improve local air quality, and provide fuel for homes, businesses and transportation. Our process creates a productive use for methane which would otherwise be burned or vented to the atmosphere. And in doing so, we displace traditional fossil fuels from the energy system.

HETI: Archaea recently brought online a first-of-its-kind RNG plant in Medora, Indiana. Can you tell us more about the launch and why it’s such a significant milestone for the company?  

SS:Archaea’s Medora plant came online in October 2023 – it was the first Archaea RNG plant to come online since bp’s acquisition. At Medora, we deployed the Archaea Modular Design (AMD) which streamlines and accelerates the time it takes to build our plants. Traditionally, RNG plants have been custom-built, but AMD allows plants to be built on skids with interchangeable components for faster builds.

HETI: Now that the Medora plant is online, what does the future hold? What are some of Archaea’s priorities over the next 12 months and beyond?  

SS: We plan to bring online around 15 RNG plants in each of 2024 and 2025. Archaea has a development pipeline of more than 80 projects that underpin the potential for around five-fold growth in RNG production by 2030.

We will continue to operate around 50 sites across the US – including RNG plants, digesters and landfill gas-to-electric facilities.

And we are looking to the future. For example, at our Assai plant in Pennsylvania, the largest RNG plant in the US, we are in the planning stages to drill a carbon capture sequestration (CCS) appraisal well to determine if carbon dioxide sequestration could be feasible at this site, really demonstrating our commitment to decarbonization and the optionality in value we have across our portfolio.

HETI: bp has had an office in Washington, DC for many years. Can you tell us more about the role that legislation has to play in the energy transition? 

SS: Policy can play a critical role in advancing the energy transition, providing the necessary support to accelerate reductions in greenhouse gas emissions. We actively advocate for such policies through direct lobbying, formal comments and testimony, communications activities and advertising. We also advocate with regulators to help inform their rulemakings, as with the US Environmental Protection Agency to support the finalization of a well-designed electric Renewable Identification Number (eRIN) program.

HETI: Science and innovation are key drivers of the energy transition. In your view, what are some of most exciting innovations supporting the goal to reach net-zero emissions?  

SS: We don’t just talk about innovation in bp, we do it – and have been for many years. This track record gives us confidence in continuing to transform, change and innovate at pace and scale. The Archaea Modular Design is a great example of the type of innovation that bp supports which enables us to pursue our goal of net-zero emissions.

Beyond Archaea, we have engineers and scientists across bp who are working on innovative solutions with the goal of lowering emissions. We believe that we need to invest in lower carbon energy to meet the world’s climate objectives, but we also need to invest in today’s energy system, which is primarily hydrocarbon focused. It’s an ‘and’ not ‘or’ approach, and we need both to be successful.

Learn more about Archaea and the work they are doing in energy transition.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Chevron, TotalEnergies back energy storage startup's $15.8M series A

money moves

A California startup that's revolutionizing polymer cathode battery technology has announced its series A round of funding with support from Houston-based energy transition leaders.

LiNova Energy Inc. closed a $15.8 million series A round led by Catalus Capital. Saft, a subsidiary of TotalEnergies, which has its US HQ in Houston, and Houston-based Chevron Technology Ventures, also participated in the round with a coalition of other investors.

LiNova will use the funds with its polymer cathode battery to advance the energy storage landscape, according to the company. The company uses a high-energy polymer battery technology that is designed to allow material replacement of the traditional cathode that is made up of cobalt, nickel, and other materials.

The joint development agreement with Saft will have them collaborate to develop the battery technology for commercialization in Saft's key markets.

“We are proud to collaborate with LiNova in scaling up its technology, leveraging the extensive experience of Saft's research teams, our newest prototype lines, and our industrial expertise in battery cell production," Cedric Duclos, CEO of Saft, says in a news release.

CTV recently announced its $500 million Future Energy Fund III, which aims to lead on emerging mobility, energy decentralization, industrial decarbonization, and the growing circular economy. Chevron has promised to spend $10 billion on lower carbon energy investments and projects by 2028.