transatlantic collaboration

Researchers from Houston, Scotland receive seed grants to power collaborative energy solutions, innovations

The University of Houston and Heriot-Watt University in Scotland have secured funding for six energy projects. Photo via Getty Images

The University of Houston and Scotland’s Heriot-Watt University have been awarded seed grants to six energy projects, which is part of an innovative transatlantic research collaboration.

Researchers from both universities will take on projects that will concentrate on innovations that range from advanced hydrogen sensing technology to converting waste into sustainable products.

This will mark the first round of awards under the “UH2HWU” seed grant program. The program was created following the signing of a memorandum of understanding between both institutions in 2024. The universities will “seek to drive global progress in energy research, education, and innovation, with a particular focus on hydrogen as a key element in the shift toward cleaner energy,” according to a news release.

“This partnership is rooted in a shared commitment to advancing research that supports a just energy transition,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, says in a news release. “Hydrogen, and in particular low carbon hydrogen, is essential to achieving sustainable energy solutions.”

The UH2HWU program provided $20,000 in seed funding to each of the projects. The program will help with the goal of helping researchers secure additional funding from private sources, companies, and government with a total of 11 proposals being submitted, and a panel of industry experts reviewing them.

One of the winning projects was titled “A joint research project on the feasibility of Repurposing Offshore Infrastructure for Clean Energy in the North Sea aka ROICE North Sea,” and was led by Ram Seetharam, ROICE Program executive director at UH, Edward Owens, professor of energy, geoscience, infrastructure and society at HWU, and Sandy Kerr, associate professor of economics at HWU.

The UH ROICE team focused on reusing old offshore structures for clean energy instead of removing them after their productive life. The UH team created cost and project models for the Gulf of Mexico and will now work with Heriot-Watt University to apply to UK North Sea. UK North Sea has over 250 platforms and about 50,000 kilometers of pipelines. To see more of the projects click here.

“We wanted to bring in industry experts to not only assess the quality of the proposals but also to attract industry support of the projects,” assistant vice president for intellectual property and industrial engagement at UH Michael Harold said in a news release. “It’s a win-win —reviewers get a first look at cutting-edge ideas, and the projects have a chance to build industry interest for future development.”

Trending News

A View From HETI

UH researchers have developed a thin film that could allow AI chips to run cooler and faster. Photo courtesy University of Houston.

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

---

This article originally appeared on our sister site, InnovationMap.

Trending News