mou for hou

UH inks international partnership for hydrogen solutions

UH President Renu Khator (right) and Principal, Vice-Chancellor and Professor of HWU Richard A. Williams signed the memorandum earlier this month. Photo via UH.edu

The University of Houston and Heriot-Watt University in Scotland signed a memorandum of understanding earlier this month that celebrates an official partnership between the schools in education, research and innovation for the energy transition.

The universities will particularly focus on hydrogen energy solutions, according to a statement from UH.

"I am thrilled to witness the official celebration of our shared commitment to advancing transformative energy solutions,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, says in a statement. “Through this partnership, we aim to harness our collective expertise to address pressing energy challenges and drive sustainable innovation on a global scale."

UH President Renu Khator and Principal, Vice-Chancellor and Professor of HWU Richard A. Williams signed the memorandum on April 11. Faculty members from UH and HWU then held a two-day technology workshop in Houston where the teams discussed areas of collaboration and future projects.

Through the partnership, the schools aim to offer more opportunities for students and faculty via interdisciplinary research, student exchange programs, joint degree offerings and industry partnerships around the world. HWU, for instance, has five campuses throughout Scotland, the UAE and Malaysia.

“This agreement represents a pivotal milestone in the international development of our global research institutes, forging a new partnership to address the most pressing societal challenges that lie ahead,” Gillian Murray, deputy principal of business and enterprise at HWU who attended the signing, adds in the statement.

Houston has been a hub for notable partnerships focused on the energy transition in recent months.

The Greater Houston Partnership and the Houston Energy Transition Initiative announced last month during CERAWeek that they had signed a memorandum of understanding with Argonne National Laboratory, a federally-funded research and development facility in Illinois owned by the United States Department of Energy and run by UChicago Argonne LLC of the University of Chicago.

The partnership aims to spur the development of commercial-scale energy transition solutions.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News