Shell partners with UK-based co. for hydrogen electrolyzer pilot

ultra-efficient electrolyzer

Supercritical Solutions' electrolyzer aims to deliver high-efficiency renewable hydrogen at a lower cost for the industrial hydrogen market. Photo courtesy Supercritical Solutions.

Shell Global Solutions International, a subsidiary of Shell, which maintains its U.S. headquarters in Houston, has signed a collaboration agreement with London-based Supercritical Solutions to advance Supercritical’s ultra-efficient hydrogen electrolyzer technology toward a field pilot demonstration.

In the deal, the companies will collaborate on a paid technology feasibility study that will support the evaluation and planning of the pilot demonstration, according to a news release. Supercritical Solutions’ technology aims to deliver high-efficiency renewable hydrogen at a lower cost for the industrial hydrogen market.

"Signing this collaboration agreement with Shell is a major milestone for Supercritical Solutions and an important step on our commercialisation journey,” Luke Tan, co-founder of Supercritical, said in the news release. “We are directly addressing the cost and complexity barriers facing the renewable hydrogen market. We are excited to move forward with a company like Shell, whose global leadership has been proven to accelerate innovative technologies to market.”

Supercritical’s hydrogen electrolyser technology can operate at high temperatures and pressures of up to 220 bar without the need for an external hydrogen compressor, rare-earth materials or easily degradable membranes. The technology removes the typical compression step in the process while delivering hydrogen at industry standards. It requires significantly less energy than many traditional electrolyzers and is more cost-efficient.

This recent investment builds on an ongoing relationship between Shell and Supercritical. Supercritical was founded in 2020 and was runner-up in Shell’s New Energy Challenge, which helps startups and scaleups develop sustainable technologies, in 2021. Shell Ventures then invested in Supercritical’s Series A funding round in 2024 with Toyota Ventures.

Lummus Technology has broken ground on a new plant in Texas that will support Advanced Ionics' hydrogen electrolyzer technology. Photo via lummustechnology.com

Houston energy tech company breaks ground on low-cost green hydrogen pilot plant

coming soon

Houston’s Lummus Technology and Advanced Ionics have broken ground on their hydrogen pilot plant at Lummus’ R&D facility in Pasadena.

The plant will support Advanced Ionics’ cutting-edge electrolyzer technology, which aims to deliver high-efficiency hydrogen production with reduced energy requirements.

“By demonstrating Advanced Ionics’ technology at our state-of-the-art R&D facility, we are leveraging the expertise of our scientists and R&D team, plus our proven track record of developing breakthrough technologies,” Leon de Bruyn, president and CEO of Lummus, said in a news release. “This will help us accelerate commercialization of the technology and deliver scalable, cost-effective and sustainable green hydrogen solutions to our customers.”

Advanced Ionics is a Milwaukee-based low-cost green hydrogen technology provider. Its electrolyzer converts process and waste heat into green hydrogen for less than a dollar per kilogram, according to the company. The platform's users include industrial hydrogen producers looking to optimize sustainability at an affordable cost.

Lummus, a global energy technology company, will operate the Advanced Ionics electrolyzer and manage the balance of plant systems.

In 2024, Lummus and Advanced Ionics established their partnership to help advance the production of cost-effective and sustainable hydrogen technology. Lummus Venture Capital also invested an undisclosed amount into Advanced Ionics at the time.

“Our collaboration with Lummus demonstrates the power of partnerships in driving the energy transition forward,” Ignacio Bincaz, CEO of Advanced Ionics, added in the news release. “Lummus serves as a launchpad for technologies like ours, enabling us to validate performance and integration under real-world conditions. This milestone proves that green hydrogen can be practical and economically viable, and it marks another key step toward commercial deployment.”

Lummus Technology will partner with Advanced Ionics to accelerate the commercialization of its hydrogen electrolyzer technology. Photo via lummustechnology.com

Houston tech company's new partnership to drive affordable green hydrogen solutions for heavy industry

dream team

A Houston energy technology company has announced a new partnership with a green hydrogen technology provider.

Lummus Technology has teamed up with Milwaukee, Wisconsin-based Advanced Ionics to accelerate the commercialization of its hydrogen electrolyzer technology. Lummus Venture Capital has also invested an undisclosed amount into the company's business.

“Lummus has a proven track record of serving as a launchpad for innovative technologies,” says Leon de Bruyn, president and CEO of Lummus Technology, in a news release. “With Advanced Ionics, we will leverage this experience to develop and deploy cost-efficient solutions that advance green hydrogen production and help decarbonize key sectors of the downstream energy industry.”

The platform that Advanced Ionics has created works with process and waste heat to produce green hydrogen for less than a dollar per kilogram, according to the company. The platform's users include industrial hydrogen producers looking to optimize sustainability at an affordable cost.

“Water vapor electrolyzers address two of the biggest challenges to expanding green hydrogen production: capital costs and electricity requirements,” adds Chad Mason, CEO of Advanced Ionics. “Our partnership with Lummus Technology – and their additional investment – marks a pivotal next step in accelerating the commercialization of technology, which was purpose-built for decarbonizing heavy industry.”

Lummus, a global licensor of hydrogen technology for refinery, petrochemical and other industrial gas applications, has also supported other energy transition verticals recently, including sustainable plastics alternatives and carbon capture.

In total, HIF has raised $200 million this year. Photo via hifglobal.com

Japanese agency invests $36M into Houston e-fuels company's portfolio

coming in hot

Houston-based electrofuel company HIF Global has secured a $36 million investment from the Japan Organization for Metals and Energy Security, a government agency.

The investment, made through an e-fuel subsidiary of Japanese energy company Idemitsu Kosan, is earmarked for HIF’s e-fuel projects in the U.S., Australia, Chile, and Uruguay.

Earlier this year, Idemitsu led a $164 million investment round in HIF. Of that amount, Idemitsu chipped in $114 million. Other investors included Houston-based Baker Hughes along with AME, EIG, Gemstone Investments, and Porsche.

In total, HIF has raised $200 million this year.

“Japan set a priority for the commercial introduction of e-fuels into its fuel supply to support their mandate for 46 percent [greenhouse gas] emissions reduction by 2030. We have already proven e-fuels are a real solution with over 18 months of e-fuels production from our Haru Oni facility in southern Chile,” says Cesar Norton, president and CEO of HIF.

In 2023, Idemitsu agreed to buy e-methanol from HIF’s $6 billion plant in Matagorda County. HIF says the plant will be the world’s first large-scale e-fuel facility. The plant is expected to produce about 1.4 million metric tons per year of e-methanol and about 300,000 metric tons of green hydrogen per year by 2027.

HIF, founded in 2016, aims to produce 150,000 barrels per day of e-fuel and recycle 25 million metric tons per year of carbon dioxide by 2035. E-fuels, which are synthetic alternatives to fossil fuels, include e-gasoline, e-diesel, and e-sustainable aviation fuel converted from e-methanol.

Using electrolyzers powered by renewable energy, HIF begins the e-fuel process by separating hydrogen from oxygen in water. The company then couples the resulting green hydrogen with recycled carbon dioxide to create carbon-neutral e-fuels.

The facility, once completed, will be able to produce 165 kilo tons per Annum of hydrogen and 5,000 metric tons per day of ammonia. Photo via Getty Images

Houston company scores agreement to work on Canadian green hydrogen project

contract secured

Houston-headquartered McDermott has reported that it secured an agreement to work on Canada's first commercial green hydrogen and ammonia production facility.

The Early Contractor Involvement agreement is from Abraxas Power Corp. to work on the Exploits Valley Renewable Energy Corporation (EVREC) project located in Central Newfoundland and will include developing a wind farm with up to 530 turbines that will have the ability to generate 3.5 gigawatts of electricity and 150 megawatts solar photo voltaic. Additionally, the facility, once completed, will be able to produce 165 kilo tons per Annum of hydrogen and 5,000 metric tons per day of ammonia.

"The agreement is testament to McDermott's industry-leading delivery and installation expertise, and the breadth of our capabilities across the energy transition," Rob Shaul, McDermott's senior vice president, Low Carbon Solutions, says in a news release. "Our century of experience, from concept to completion, and integrated delivery model, means we can offer Abraxas a repeatable modular implementation solution that is expected to drive cost savings, reduce risk and provide quality assurance."

Per the agreement, the company will provide front-end engineering design, engineering, procurement, and construction execution planning services, and more for the project. According to McDermott, the company's contribution to the project will be led from McDermott's Houston office with support from its office in India.

Recently, another collaboration McDermott is working on reached a new milestone. Houston-based Element Fuels has completed the pre-construction phase of its hydrogen-powered clean fuels refinery and combined-cycle power plant in the Port of Brownsville. McDermott is providing front-end engineering design services for the project.

In October, McDermott announced that it signed a lighthouse agreement with United Kingdom-based industrial software company AVEVA and Massachusetts-based product lifecycle management platform provider Aras. With the new software, McDermott plans "to develop its asset lifecycle management capability across the energy transition, oil and gas, and nuclear sectors," per the news release.

ABB plans to collaborate with Houston-based Green Hydrogen International on the Hydrogen City project. Photo via Getty Images

Automation company signs on to power up $10 billion hydrogen project in South Texas

seeing green

Electrification and automation company ABB, whose U.S. headquarters for its Energy Industries business is in Houston, has tentatively agreed to supply power for a $10 billion hydrogen project in South Texas.

Under a new memorandum of understanding, ABB plans to collaborate with Houston-based Green Hydrogen International on the Hydrogen City project. The first phase of the project is expected to generate 280,000 tons of green hydrogen per year. This green hydrogen will then be converted to one million tons of green ammonia each year.

“Together, we will enable efforts to decarbonize global industry and progress towards a net-zero future,” Brandon Spencer, president of ABB Energy Industries, says in a news release.

The memorandum of understanding calls for ABB’s technology to be assessed for delivery of solar and onshore wind energy to the 2.2-gigawatt electrolyzer facility at Hydrogen City.

The project will store up to 24,000 tons of green hydrogen in underground salt caverns. A 75-mile pipeline to the nearby Corpus Christi energy port will carry the green hydrogen to an ammonia production facility. At this facility, green hydrogen will be turned into green ammonia that’ll be shipped to Europe and Asia.

Green Hydrogen International is in talks with companies interested in using green hydrogen from Hydrogen City as feedstock for sustainable aviation fuel and e-methane.

Hydrogen City will serve a global green ammonia market whose value is projected to reach $17.9 billion by 2030. Construction on Hydrogen City is scheduled to start in 2026, with initial production set for 2030.

Green Hydrogen International unveiled the multiphase Hydrogen City project in 2022, saying it would be “the world’s largest green hydrogen production and storage hub.” At his month’s CERAWeek in Houston, officials provided an update on Hydrogen City.

“Ammonia has the potential to support decarbonization efforts as part of the energy transition through its use as an alternative fuel for heavy transport such as shipping, as well as its current major use in fertilizer production,” ABB says in the news release.

Last October, Green Hydrogen International announced a Hydrogen City partnership with Japanese oil and gas giant Inpex, whose U.S. outpost is in Houston.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

$524M Texas Hill Country solar project powered by Hyundai kicks off

powering up

Corporate partners—including Hyundai Engineering & Construction, which maintains a Houston office—kicked off a $524 million solar power project in the Texas Hill Country on Jan. 27.

The 350-megawatt, utility-scale Lucy Solar Project is scheduled to go online in mid-2027 and represents one of the largest South Korean-led investments in U.S. renewable energy.

The solar farm, located on nearly 2,900 acres of ranchland in Concho County, will generate 926 gigawatt-hours of solar power each year. That’s enough solar power to supply electricity to roughly 65,000 homes in Texas.

Power to be produced by the hundreds of thousands of the project’s solar panels has already been sold through long-term deals to buyers such as Starbucks, Workday and Plano-based Toyota Motor North America.

The project is Hyundai Engineering & Construction’s largest solar power initiative outside Asia.

“The project is significant because it’s the first time Hyundai E&C has moved beyond its traditional focus on overseas government contracts to solidify its position in the global project financing market,” the company, which is supplying solar modules for the project, says on its website.

Aside from Hyundai Engineering & Construction, a subsidiary of automaker Hyundai, Korean and U.S. partners in the solar project include Korea Midland Power, the Korea Overseas Infrastructure & Urban Development Corp., solar panel manufacturer Topsun, investment firm EIP Asset Management, Primoris Renewable Energy and High Road Energy Marketing.

Primoris Renewable Energy is an Aurora, Colorado-based subsidiary of Dallas-based Primoris Services Corp. Another subsidiary, Primoris Energy Services, is based in Houston.

High Road is based in the Austin suburb of West Lake Hills.

“The Lucy Solar Project shows how international collaboration can deliver local economic development and clean power for Texas communities and businesses,” says a press release from the project’s partners.

Elon Musk vows to put data centers in space and run them on solar power

Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”

$21.5 billion merger will create Houston-based energy powerhouse

Major Merger

Oklahoma City, Oklahoma-based Devon Energy has agreed to buy Houston-based Coterra Energy in a $21.5 billion all-stock deal, forming an energy powerhouse that will be headquartered in Houston. The combined company, boasting an enterprise value of $58 billion, will adopt the Devon brand name.

Revenue for the two publicly traded companies totaled nearly $18.8 billion in the first nine months of 2025. Devon is a Fortune 500 company, but Coterra doesn’t appear in the most recent ranking.

The deal, already approved by the boards of both companies, is expected to close in the second quarter of 2026. Once the transaction is completed, Devon shareholders will own about 54 percent of the combined company and Coterra shareholders will own 46 percent.

“This transformative merger combines two companies with proud histories and cultures of operational excellence, creating a premier shale operator,” says Clay Gaspar, Devon’s president and CEO.

The combined company will be one of the world’s largest shale producers, with third-quarter 2025 production exceeding 550 thousand barrels of oil per day and 4.3 billion cubic feet of gas per day. A significant presence in the Delaware Basin, encompassing hundreds of thousands of acres, will anchor the company’s operations. The 10,000-square-mile Delaware Basin is in West Texas and southeastern New Mexico.

The new Devon also will operate in the Permian Basin, located in West Texas and New Mexico; Marcellus Shale, located in five states in the East; and Anadarko Basin, located in the Texas Panhandle, Colorado, Kansas, and Oklahoma.

Gaspar will be president and CEO of the combined company, and Tom Jorden, chairman, president, and CEO of Coterra, will be non-executive chairman.