teamwork

Houston-based sustainability company partners with Toshiba on carbon capture projects

Lummus Technology and Toshiba Energy Systems and Solutions Corp. announced a collaboration agreement that will have both companies pursuing carbon capture projects. Photo courtesy of Toshiba

Two global companies have announced a collaborative effort toward pursuing carbon capture projects.

Toshiba’s subsidiary Toshiba Energy Systems will provide its advanced amine-based solvents, which are specifically tailored for post-combustion carbon capture, as well as its “system design guidelines” aimed for Toshiba’s solvents. Houston-based Lummus Technology will provide its post-combustion carbon capture technology.

Lummus’ access to Toshiba’s advanced amine-based post-combustion carbon capture solvents and technology will be vital for the project. Toshiba’s amine-based post-combustion carbon has been used in commercial and demonstration plants in Japan, and have allowed capturing of over 600 tons per day of CO2. With this access, Lummus can integrate its technology into project designs, and deliver “operational excellence and a competitive cost structure for customers,” according to the company.

Lummus can offer clients an OPEX-competitive solution by incorporating Toshiba’s advanced solvents that will be characterized by reduced amine emissions, lower specific energy consumption per ton of CO2 absorbed, and higher solvent stability against degradation.

“We are delighted to collaborate with Lummus to introduce our advanced amine-based solvent and CO2 capture solution to a broader audience,” Shinya Fujitsuka, senior vice president of Toshiba Energy Systems and Solutions Corp., says in a news release. “Addressing the urgent need for decarbonization is paramount, and I have every confidence that our partnership with Lummus will enable us to make meaningful contributions towards achieving this goal.”

Both companies have been active in these innovations for years. Lummus has been a leader in post-combustion carbon capture technology since the 1990s by using latest generation solvent technology that provides the full design involving an absorber and solvent regeneration systems, which can be applied to complex combustion flue gas streams. Since 2007, Toshiba has been considered an industry leader in post-combustion amine-based solvent CO2 capture technology.

“I am excited about our partnership with Toshiba, which expands Lummus’ range of low carbon solutions and aligns with our commitment to lowering emissions for the downstream energy industry,” Leon de Bruyn, president and CEO of Lummus Technology, says in the release. “Combining Lummus’ post-combustion carbon capture technology with Toshiba’s highly competitive solvents and technology gives our customers a strong option for CAPEX and OPEX solutions as they advance their carbon capture investments.”

Lummus has recently secured other partnerships with Dongyang Environment Group to roll out Lummus' advanced plastics recycling technology in Seosan, Chungcheongnam-do, South Korea, and will be operated by Dongyang Environment's subsidiary, Seohae Green Chemical. Lummus also paired with Citroniq Chemicals to build North American plants that produce green polypropylene.

Trending News

A View From HETI

Last Energy will build a 5-megawatt reactor at the Texas A&M-RELLIS campus. Photo courtesy Last Energy.

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Trending News