teamwork

Houston-based sustainability company partners with Toshiba on carbon capture projects

Lummus Technology and Toshiba Energy Systems and Solutions Corp. announced a collaboration agreement that will have both companies pursuing carbon capture projects. Photo courtesy of Toshiba

Two global companies have announced a collaborative effort toward pursuing carbon capture projects.

Toshiba’s subsidiary Toshiba Energy Systems will provide its advanced amine-based solvents, which are specifically tailored for post-combustion carbon capture, as well as its “system design guidelines” aimed for Toshiba’s solvents. Houston-based Lummus Technology will provide its post-combustion carbon capture technology.

Lummus’ access to Toshiba’s advanced amine-based post-combustion carbon capture solvents and technology will be vital for the project. Toshiba’s amine-based post-combustion carbon has been used in commercial and demonstration plants in Japan, and have allowed capturing of over 600 tons per day of CO2. With this access, Lummus can integrate its technology into project designs, and deliver “operational excellence and a competitive cost structure for customers,” according to the company.

Lummus can offer clients an OPEX-competitive solution by incorporating Toshiba’s advanced solvents that will be characterized by reduced amine emissions, lower specific energy consumption per ton of CO2 absorbed, and higher solvent stability against degradation.

“We are delighted to collaborate with Lummus to introduce our advanced amine-based solvent and CO2 capture solution to a broader audience,” Shinya Fujitsuka, senior vice president of Toshiba Energy Systems and Solutions Corp., says in a news release. “Addressing the urgent need for decarbonization is paramount, and I have every confidence that our partnership with Lummus will enable us to make meaningful contributions towards achieving this goal.”

Both companies have been active in these innovations for years. Lummus has been a leader in post-combustion carbon capture technology since the 1990s by using latest generation solvent technology that provides the full design involving an absorber and solvent regeneration systems, which can be applied to complex combustion flue gas streams. Since 2007, Toshiba has been considered an industry leader in post-combustion amine-based solvent CO2 capture technology.

“I am excited about our partnership with Toshiba, which expands Lummus’ range of low carbon solutions and aligns with our commitment to lowering emissions for the downstream energy industry,” Leon de Bruyn, president and CEO of Lummus Technology, says in the release. “Combining Lummus’ post-combustion carbon capture technology with Toshiba’s highly competitive solvents and technology gives our customers a strong option for CAPEX and OPEX solutions as they advance their carbon capture investments.”

Lummus has recently secured other partnerships with Dongyang Environment Group to roll out Lummus' advanced plastics recycling technology in Seosan, Chungcheongnam-do, South Korea, and will be operated by Dongyang Environment's subsidiary, Seohae Green Chemical. Lummus also paired with Citroniq Chemicals to build North American plants that produce green polypropylene.

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News