Lummus Technology will partner with Advanced Ionics to accelerate the commercialization of its hydrogen electrolyzer technology. Photo via lummustechnology.com

A Houston energy technology company has announced a new partnership with a green hydrogen technology provider.

Lummus Technology has teamed up with Milwaukee, Wisconsin-based Advanced Ionics to accelerate the commercialization of its hydrogen electrolyzer technology. Lummus Venture Capital has also invested an undisclosed amount into the company's business.

“Lummus has a proven track record of serving as a launchpad for innovative technologies,” says Leon de Bruyn, president and CEO of Lummus Technology, in a news release. “With Advanced Ionics, we will leverage this experience to develop and deploy cost-efficient solutions that advance green hydrogen production and help decarbonize key sectors of the downstream energy industry.”

The platform that Advanced Ionics has created works with process and waste heat to produce green hydrogen for less than a dollar per kilogram, according to the company. The platform's users include industrial hydrogen producers looking to optimize sustainability at an affordable cost.

“Water vapor electrolyzers address two of the biggest challenges to expanding green hydrogen production: capital costs and electricity requirements,” adds Chad Mason, CEO of Advanced Ionics. “Our partnership with Lummus Technology – and their additional investment – marks a pivotal next step in accelerating the commercialization of technology, which was purpose-built for decarbonizing heavy industry.”

Lummus, a global licensor of hydrogen technology for refinery, petrochemical and other industrial gas applications, has also supported other energy transition verticals recently, including sustainable plastics alternatives and carbon capture.

Lummus Technology and Toshiba Energy Systems and Solutions Corp. announced a collaboration agreement that will have both companies pursuing carbon capture projects. Photo courtesy of Toshiba

Houston-based sustainability company partners with Toshiba on carbon capture projects

teamwork

Two global companies have announced a collaborative effort toward pursuing carbon capture projects.

Toshiba’s subsidiary Toshiba Energy Systems will provide its advanced amine-based solvents, which are specifically tailored for post-combustion carbon capture, as well as its “system design guidelines” aimed for Toshiba’s solvents. Houston-based Lummus Technology will provide its post-combustion carbon capture technology.

Lummus’ access to Toshiba’s advanced amine-based post-combustion carbon capture solvents and technology will be vital for the project. Toshiba’s amine-based post-combustion carbon has been used in commercial and demonstration plants in Japan, and have allowed capturing of over 600 tons per day of CO2. With this access, Lummus can integrate its technology into project designs, and deliver “operational excellence and a competitive cost structure for customers,” according to the company.

Lummus can offer clients an OPEX-competitive solution by incorporating Toshiba’s advanced solvents that will be characterized by reduced amine emissions, lower specific energy consumption per ton of CO2 absorbed, and higher solvent stability against degradation.

“We are delighted to collaborate with Lummus to introduce our advanced amine-based solvent and CO2 capture solution to a broader audience,” Shinya Fujitsuka, senior vice president of Toshiba Energy Systems and Solutions Corp., says in a news release. “Addressing the urgent need for decarbonization is paramount, and I have every confidence that our partnership with Lummus will enable us to make meaningful contributions towards achieving this goal.”

Both companies have been active in these innovations for years. Lummus has been a leader in post-combustion carbon capture technology since the 1990s by using latest generation solvent technology that provides the full design involving an absorber and solvent regeneration systems, which can be applied to complex combustion flue gas streams. Since 2007, Toshiba has been considered an industry leader in post-combustion amine-based solvent CO2 capture technology.

“I am excited about our partnership with Toshiba, which expands Lummus’ range of low carbon solutions and aligns with our commitment to lowering emissions for the downstream energy industry,” Leon de Bruyn, president and CEO of Lummus Technology, says in the release. “Combining Lummus’ post-combustion carbon capture technology with Toshiba’s highly competitive solvents and technology gives our customers a strong option for CAPEX and OPEX solutions as they advance their carbon capture investments.”

Lummus has recently secured other partnerships with Dongyang Environment Group to roll out Lummus' advanced plastics recycling technology in Seosan, Chungcheongnam-do, South Korea, and will be operated by Dongyang Environment's subsidiary, Seohae Green Chemical. Lummus also paired with Citroniq Chemicals to build North American plants that produce green polypropylene.

Lummus and Citroniq say their first plant, set for completion in 2027, will produce 400,000 metric tons of green polypropylene each year. Photo via lummustechnology.com

Houston companies partner on sustainable plastics alternative

green polypropylene

Two Houston companies, Lummus Technology and Citroniq Chemicals, have paired up to build North American plants that produce green polypropylene.

Polypropylene is a thermoplastic used to manufacture items such as plastic packaging, plastic parts, medical supplies, textiles, and fibers. Green polypropylene is made from biomass.

Lummus and Citroniq say their first plant, set for completion in 2027, will produce 400,000 metric tons of green polypropylene each year. The plant will be at an undisclosed location in the Midwest.

In April, Lummus and Citroniq signed a letter of intent to develop Citroniq green polypropylene projects in North America using Lummus’ Verdenesuite of polypropylene technology. Their newly announced licensing and engineering agreements apply to the first of four planned facilities.

“This agreement demonstrates the progress we continue to make with Citroniq in establishing the first world-scale sustainable bio-polypropylene production process in North America,” Romain Lemoine, chief business officer for polymers and petrochemicals at Lummus, says in a news release.

“Combining Lummus’ leadership in polypropylene licensing with Citroniq’s carbon-negative production capabilities will help us meet the growing demand for bio-polypropylene and accelerate the decarbonization of the downstream energy industry,” Lemoine adds.

Citroniq says it’s investing more than $5 billion to expand its E2O process. The process produces carbon-negative plastics and hydrogen-and-carbon compounds called olefins from fully sustainable feedstocks. This eliminates the use of convention fossil-fuel hydrocarbons, Citroniq says.

Mel Badheka, principal and co-founder of Citroniq, says his company aims “to meet the market’s growing need for sustainable carbon-negative polypropylene at a competitive price.”

The global market for green polypropylene was valued at $123.5 billion in 2022, according to Grand View Research. Growth in the sector is being driven in part by the construction industry, the firm says.

Lummus Technology will roll out its advanced plastics recycling technology in South Korea. Photo via Canva

Houston company secures deal to launch recycling tech in South Korea

growing biz

A Houston-based company with a suite of technologies and energy solutions has announced a new deal that will take its business to South Korea.

Lummus Technology reached an agreement with Dongyang Environment Group to roll out Lummus' advanced plastics recycling technology in Seosan, Chungcheongnam-do, South Korea, and will be operated by Dongyang Environment's subsidiary, Seohae Green Chemical.

"We are pleased to announce this agreement with Dongyang Environment, one of South Korea's leading providers of energy and environmental services," Greg Shumake, vice president and managing director of Green Circle, says in a press release. "This is a significant step forward in our commitment to the circular economy and to deploying advanced plastics recycling technology in South Korea and other key markets around the world."

Lummus' Green Circle technology converts plastic waste into chemicals and feedstocks, creating circularity. The platform "concentrates and expands Lummus Technology’s capabilities to capture new opportunities in the energy transition and circular economy," per the release.

"Dongyang's resource recycling and energy conversion expertise and Lummus' world-class technology will create strong synergies," Byung Jin Song, the head of Dongyang Environment R&D center, says in the release. "Additionally, Dongyang will strengthen its position in the chemical recycling industry, offering more sustainable products and increased value to our customers."

Last month, Lummus remarked that its interested in expanding contracts in the Middle East.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Can the Texas grid handle extreme weather conditions across regions?

Guest Column

From raging wildfires to dangerous dust storms and fierce tornadoes, Texans are facing extreme weather conditions at every turn across the state. Recently, thousands in the Texas Panhandle-South Plains lost power as strong winds ranging from 35 to 45 mph with gusts upwards of 65 mph blew through. Meanwhile, many North Texas communities are still reeling from tornadoes, thunderstorms, and damaging winds that occurred earlier this month.

A report from the National Oceanic and Atmospheric Administration found that Texas led the nation with the most billion-dollar weather and climate disasters in 2023, while a report from Texas A&M University researchers indicates Texas will experience twice as many 100-degree days, 30-50% more urban flooding and more intense droughts 15 years from now if present climate trends persist.

With the extreme weather conditions increasing in Texas and nationally, recovering from these disasters will only become harder and costlier. When it comes to examining the grid’s capacity to withstand these volatile changes, we’re past due. As of now, the grid likely isn’t resilient enough to make do, but there is hope.

Where does the grid stand now?

Investment from utility companies have resulted in significant improvements, but ongoing challenges remain, especially as extreme weather events become more frequent. While the immediate fixes have helped improve reliability for the time being, it won't be enough to withstand continuous extreme weather events. Grid resiliency will require ongoing efforts over one-time bandaid approaches.

What can be done?

Transmission and distribution infrastructure improvements must vary geographically because each region of Texas faces a different set of hazards. This makes a one-size-fits-all solution impossible. We’re already seeing planning and investment in various regions, but sweeping action needs to happen responsibly and quickly to protect our power needs.

After investigators determined that the 2024 Smokehouse Creek fire (the largest wildfire in Texas history) was caused by a decayed utility pole breaking, it raised the question of whether the Panhandle should invest more in wrapping poles with fire retardant material or covering wires so they are less likely to spark.

In response, Xcel Energy (the Panhandle’s version of CenterPoint) filed its initial System Resiliency Plan with the Public Utility Commission of Texas, with proposed investments to upgrade and strengthen the electric grid and ensure electricity for about 280,000 homes and businesses in Texas. Tailored to the needs of the Texas Panhandle and South Plains, the $539 million resiliency plan will upgrade equipment’s fire resistance to better stand up to extreme weather and wildfires.

Oncor, whose territories include Dallas-Fort Worth and Midland-Odessa, analyzed more than two decades of weather damage data and the impact on customers to identify the priorities and investments needed across its service area. In response, it proposed investing nearly $3 billion to harden poles, replace old cables, install underground wires, and expand the company's vegetation management program.

What about Houston?

While installing underground wires in a city like Dallas makes for a good investment in grid resiliency, this is not a practical option in the more flood-prone areas of Southeast Texas like Houston. Burying power lines is incredibly expensive, and extended exposure to water from flood surges can still cause damage. Flood surges are also likely to seriously damage substations and transformers. When those components fail, there’s no power to run through the lines, buried or otherwise.

As part of its resiliency plan for the Houston metro area, CenterPoint Energy plans to invest $5.75 billion to strengthen the power grid against extreme weather. It represents the largest single grid resiliency investment in CenterPoint’s history and is currently the most expensive resiliency plan filed by a Texas electric utility. The proposal calls for wooden transmission structures to be replaced with steel or concrete. It aims to replace or strengthen 5,000 wooden distribution poles per year until 2027.

While some of our neighboring regions focus on fire resistance, others must invest heavily in strengthening power lines and replacing wooden poles. These solutions aim to address the same critical and urgent goal: creating a resilient grid that is capable of withstanding the increasingly frequent and severe weather events that Texans are facing.

The immediate problem at hand? These solutions take time, meaning we’re likely to encounter further grid instability in the near future.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

The longest conveyer belt in the U.S. is moving sand in Texas

The Dune Express

It's longer than the width of Rhode Island, snakes across the oil fields of the southwest U.S. and crawls at 10 mph – too slow for a truck and too long for a train.

It's a new sight: the longest conveyer belt in America.

Atlas Energy Solutions, a Texas-based oil field company, has installed a 42-mile long conveyer belt to transport millions of tons of sand for hydraulic fracturing. The belt the company named “The Dune Express” runs from tiny Kermit, Texas, and across state borders into Lea County, New Mexico. Tall and lanky with lids that resemble solar modules, the steel structure could almost be mistaken for a roller coaster.

In remote West Texas, there are few people to marvel at the unusual machine in Kermit, a city with a population of less than 6,000, where the sand is typically hauled by tractor-trailers. During fracking, liquid is pumped into the ground at a high pressure to create holes, or fractures, that release oil. The sand helps keep the holes open as water, oil and gas flow through it.

But moving the sand by truck is usually a long and potentially dangerous process, according to CEO John Turner. He said massive trucks moving sand and other industrial goods are a common site in the oil-rich Permian Basin and pose a danger to other drivers.

“Pretty early on, the delivery of sand via truck was not only inefficient, it was dangerous,” he said.

The conveyor belt, with a freight capacity of 13 tons, was designed to bypass and trudge alongside traffic.

Innovation isn't new to the oil and gas industry, nor is the idea to use a conveyor belt to move materials around. Another conveyer belt believed to be the world’s longest conveyor — at 61 miles long — carries phosphorous from a mine in Western Sahara on the northwest coast of Africa, according to NASA Earth Observatory.

When moving sand by truck became a nuisance, an unprecedented and risky investment opportunity arose: constructing a $400 million machine to streamline the production of hydraulic fracturing. The company went public in March 2023, in part, to help pay for the conveyor belt and completed its first delivery in January, Turner said.

The sand sits in a tray-shaped pan with a lid that can be taken off at any point, but most of it gets offloaded into silos near the Texas and New Mexico border. Along its miles-long journey, the sand is sold and sent to fracking companies who move it by truck for the remainder of the trip.

Keeping the rollers on the belt aligned and making sure it runs smoothly are the biggest maintenance obstacles, according to Turner. The rollers are equipped with chips that signal when it's about to fail and need to be replaced. This helps prevent wear and tear and keep the machine running consistently, Turner said.

The belt cuts through a large oil patch where environmentalists have long raised concerns about the industry disturbing local habitats, including those of the sagebrush lizard, which was listed as an endangered species last year by the U.S. Fish and Wildlife Service.

“In addition to that, we know that the sand will expedite further drilling nearby,” said Luke Metzger, executive director of Environment Texas. “We could see more drilling than we otherwise would, which means more air pollution, more spills than we otherwise would.”

The Dune Express currently runs for about 12 to 14 hours a day at roughly half capacity but the company expects to it to be rolling along at all hours later this year.

In New Mexico, Lea County Commissioner Brad Weber said he hopes the belt alleviates traffic on a parallel highway where car crashes are frequent.

“I believe it’s going to make a very positive impact here,” he said.

New report shows Texas led nation in solar and battery growth in 2024

by the numbers

The winds of change in power generation are sweeping through Texas.

Texas outpaced all other states in various categories of power generation in 2024, according to a new report from Ember, an energy think tank. The report shows:

  • Texas contributed more (12 terawatt-hours) to the country’s 64 terawatt-hour rise in solar generation last year than any other state.
  • Texas installed more solar (7.4 gigawatts) and battery (3.9 gigawatt) capacity than any other state.
  • Texas installed more utility-scale battery capacity (3.9 gigawatts) than any other state.
  • Texas saw the second biggest increase (eight terawatt-hours) in natural gas generation in 2024. Only Virginia, at 10 terawatt-hours, ranked higher.
  • Texas ranked second among the states for the biggest drop in production of coal-fueled power (6.07 terawatt-hours), preceded only by Wyoming (6.3 terawatt-hours).

Overall, coal represented 14 percent of power generation in Texas last year, with the combination of wind and solar at 30 percent, according to the report. Across the U.S., says the report, wind and solar generated more electricity than coal for the first time. Coal generation made up just 15% of U.S. electricity generation in 2024.

“The shift away from coal has been primarily driven by market dynamics and availability of more cost-effective resources,” the report says. “The unit costs of wind and solar have reduced significantly and their quick installation makes them commercially attractive.”

Citing data like the figures published by Ember, Texas Gov. Greg Abbott champions Texas as the “Energy Capital of the World,” a title that Houston also claims.

“As Texas continues to experience unprecedented growth, we will remain a leader in energy while also bolstering the Texas grid to meet the growing demands of our great state,” Abbott said in 2024.